Online Appendix C3 BTS Guideline for Pleural Disease

Section C Pleural infection

Question C3 Evidence Review and Protocol

C3 For adults with established pleural infection, what initial drainage strategy provides the best clinical outcomes?

Contents

Question Evidence Review	2
Background	. 2
Outcomes	
Evidence review	. 2
Evidence statements	5
Recommendation	
Good Practice Points	
Research Recommendations	5
Risk of bias summary	6
References	6
Question Protocol	7

Question Evidence Review

C3 For adults with established pleural infection, what initial drainage strategy provides the best clinical outcomes?

Background

The adequate drainage of infected fluid and material from the pleural space in order to achieve source control is a cornerstone of the initial management of pleural infection. There are a number of means by which the infected pleural fluid may be removed, ranging from simple percutaneous aspiration or drainage via chest tube to more invasive surgical measures. Hence this review assesses which approach to drainage of the infected pleural space is the most successful at improving clinical outcomes.

Outcomes

Mortality, need for repeat intervention, surgery, quality of life, patient symptoms, length of hospital stay and complications

Evidence review

The initial literature search identified 41 papers for review, but closer inspection revealed substantial heterogeneity in the studies meaning that meta-analysis would not be possible. A pragmatic approach was therefore adopted, taking a narrative approach to answer key questions with the data available.

Six relevant studies included one post-hoc randomised controlled trail (RCT)¹, two assumed prospective studies (no *a priori* power calculation or agreement on outcome interpretation provided)^{2,3} and three retrospective cohorts⁴⁻⁶. These studies compared small bore (\leq 14F) chest tube drainage versus large bore (>14F) chest tube drainage¹, chest tube drainage versus drainage under video-assisted thoracoscopic surgery (VATS)^{2,4}, chest tube drainage versus drainage under VATS or drainage under open thoracotomy⁵, chest tube drainage (with or without streptokinase) versus drainage under VATS or drainage under open thoracotomy⁶ and large bore (36F) chest tube drainage plus intrapleural streptokinase versus drainage under VATS³.

Limitations to the presented data

When interpreting the data it should be noted that Metin et al focused on class V empyema per Light's classification⁷, and hence may not have included all patients presenting with pleural infection over the study period, and that 16/114 (14.0%) patients included in the study had tuberculous empyema⁴. Similarly, 28/104 (26.9%) patients in the Wozniak et al study presented with either post-surgical or post-traumatic empyema or 15/104 (14.4%) appeared to have simple parapneumonic effusions (described as free flowing with pleural fluid pH >7.3) as opposed to true pleural infection.⁶ Finally, in the Semenkovich et al study, the population of patients initially managed with chest tube drainage were significantly older with a higher frequency of co-morbidities than the surgical population and hence there is a risk of treatment selection bias with a more conservative approach taken in patients not thought to be well enough for surgery and therefore already likely to have a worse outcome from their pleural infection.⁵

No studies compared medical thoracoscopic drainage against either simple chest tube or surgical (VATS or open thoracotomy) drainage. However, Bilgin et al performed 29/35 (82.9%) VATS procedures under analgosedation rather than a general anaesthetic, although these remained procedures led by a thoracic surgeon as opposed to a physician.²

Mortality

Five studies reported on mortality across different drainage strategies, and a summary of the results is shown in <u>Table C3a</u>.¹⁻⁵

Table C3a: Comparison of mortality rate following different drainage strategy protocols for the treatment of pleural infection in adults

Study	Mortality rate (no. patients)			р	
	C	hest tube drainage,	bore size comparis	on	
	<10F	10-14F	15-20F	>20F	
Rahman 2010 ¹	17% (10/58)	22% (46/208)	25% (18/70)	25% (17/69)	0.67
	Chest tube drainage		Surgical drainage		
			VATS	Thoracotomy	
Bilgin 2006 ²	3%	(1/35)	0% (0/35)	-	NR
Semenkovich 2018 ⁵	21%	(322/1563)	6% (83/1313)	4% (47/1219)	<0.001
	- Streptokinase	+ Streptokinase			
Metin 2010 ⁴	4% (2/47)	0% (0/23)	0% (0/44)	-	NA
Wait 1997 ³	-	11% (1/9)	9% (1/11)	-	NR

NA - not applicable; NR - not reported; VATS - video-assisted thoracoscopic surgery

Need for repeat intervention

Three studies reported on the need for repeat intervention. Two studies compared the need for repeat intervention following chest tube drainage or surgical drainage (thoracotomy and/or VATS)^{5,6} and the third study compared the need for repeat intervention following chest tube drainage, with or without streptokinase fibrinolytic therapy, versus VATS surgical drainage⁴ (Table C3b).

Table C3b: Comparison of the need for repeat intervention following different drainage strategy protocols for the treatment of pleural infection in adults

Study	Rate of need for repeat intervention (no. patients)			р
	Chest tube drainage	Surgic	al drainage	
		VATS	Thoracotomy	
Wozniak 2009 ⁶	56% (28/50)	13% (7/54)	-	<0.001
Semenkovich 2018 ⁵	9% (113/1563)	3% (37/1313)	4% (45/1219)	<0.001
	- Streptokinase + Streptokinase			
Metin 2010 ⁴	36% (17/47) 0% (0/23)	0% (0/44)	-	<0.001

VATS – video-assisted thoracoscopic surgery

Surgery

Four studies also reported on the need for thoracic surgery following chest tube drainage or surgical drainage and the results are summarised in <u>Table C3c</u>.^{1-3,5}

Quality of life and patient symptoms

No studies reported on quality of life or patient symptoms.

Table C3c: Comparison of the need for thoracic surgery following different drainage strategy protocols for the treatment of pleural infection in adults

Study	Rate of need for thoracic surgery (no. patients)			р	
	Chest tube drainage, bore size comparison				
	<10F	10-14F	15-20F	>20F	
Rahman 2010 ¹	19% (11/58)	17% (35/208)	19% (13/70)	19% (13/69)	0.97
	Chest tube drainage		Surgical drainage		
			VATS	Thoracotomy	
Bilgin 2006 ²	37%	% (13/35)	17% (6/35)	-	<0.05
Semenkovich 2018 ⁵	48%	6 (1342/2780)	40% (300/758)	4% (47/1219)	NR
	- Streptokinase	+ Streptokinase			
Wait 1997 ³	-	56% (5/9)	0% (0/11)	-	0.05

NR - not reported; VATS - video-assisted thoracoscopic surgery

Length of hospital stay

Length of hospital stay following chest tube drainage or surgical drainage was reported in five studies and a summary of the results is shown in <u>Table C3d</u>.¹⁻⁵

Table C3d: Comparison of length of hospital stay following different drainage strategy protocols for the treatment of pleural infection in adults

Study Lei	ngth of hospital s	tay (days) (mean ± S	SD, median [range]	or mean [range]†) p
	C	hest tube drainage, l	bore size comparis	on	
	<10F	10-14F	15-20F	>20F	
Rahman 2010 ¹	26 ± 29	24 ± 32	31 ± 39	28 ± 23	0.37
	Chest tube drainage		Surgic	al drainage	
			VATS	Thoracotomy	
Bilgin 2006 ²	12.8	[12-18] †	8.3 [7-11] †	-	<0.05
Semenkovich 2018 ⁵	14 [9-22]		12 [9-19]	15 [10-21]	<0.001
	- Streptokinase	+ Streptokinase			
Metin 2010 ⁴	13 ± 4	11 ± 3	3 ± 1	-	<0.001*
Wait 1997 ³	-	12.8 ± 1.1	8.7 ± 0.9	-	0.009

* Chest tube drainage with streptokinase or chest tube drainage without streptokinase versus surgical drainage under VATS, chest tube drainage with streptokinase versus chest tube drainage without streptokinase, p = 0.209

[†]Bilgin 2006 data presented as mean [range]

VATS - video-assisted thoracoscopic surgery

Complications

Finally, four studies reported on post-treatment complications following chest tube drainage or surgical drainage¹⁻⁴ and complications included bronchopleural fistula², air space, air leak >5 days, atelectasis, bleeding, air-fluid level, wound infection⁴ and pain¹. A summary of the data is shown in <u>Table C3e</u>.

Table C3e: Comparison post-treatment complications following different drainage strategy protocols for the treatment of pleural infection in adults

Study	Complications			р	
Chest tube drainage, bore size comparison (median pain score [range]}					
	<10F	10-14F	15-20F	>20F	
Rahman 2010 ¹	6 [4-7]	5 [4-6]	6 [5-7]	6 [6-8]	0.008
	Chest tube drainage		Surgical drainage		
			VATS	Thoracotomy	
Bilgin 2006 ²	0% ((0/35)*	3% (1/35)*	-	NR
	- Streptokinase	+ Streptokinase			
Metin 2010 ⁴	23 (47)†	9 (23) [†]	3 (44)†	-	<0.001
Wait 1997 ³	-	11% (1/9)*	0% (0/11)*	-	NR

* Rate of patients experiencing one or more complications (no. patients)

[†] Number of complications reported (no. patients)

NR - not reported; VATS - video-assisted thoracoscopic surgery

Evidence statements

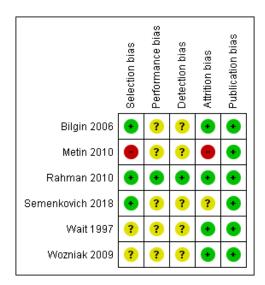
Based on the limited evidence, which may include selection bias:

Chest tube bore size appears to have no effect on mortality rate, the need for post-treatment thoracic surgery, or the length of hospital stay following chest tube drainage to treat pleural infection in adults, but bore size >14F may increase post-treatment pain (**Ungraded**)

Drainage under video-assisted thoracoscopic surgery (VATS) or open thoracotomy appears to reduce mortality, the need for repeat intervention, and the length of hospital stay when compared with standard chest tube drainage for the treatment of pleural infection in adults (**Ungraded**)

Recommendation

 Initial drainage of pleural infection should be undertaken using a small bore chest tube (14F or smaller) (Conditional - by consensus)


Good Practice Points

- ✓ Due to the lack of supporting evidence, early surgical drainage under VATS or thoracotomy should not be considered over chest tube ("medical") drainage for the initial treatment of pleural infection
- ✓ Due to lack of supporting evidence, medical thoracoscopy should not be considered as initial treatment for pleural infection

Research Recommendations

- Further research, using robust methodology with a prospective, randomised study design, is needed into determining whether initial chest tube drainage or surgical drainage is better for the treatment of pleural infection in adults
- Further research is needed into the feasibility and role of medical thoracoscopic drainage for pleural infection

Risk of bias summary

References

- 1. Rahman NM, Maskell NA, Davies CW, et al. The relationship between chest tube size and clinical outcome in pleural infection. *Chest.* 2010;137(3):536-543.
- 2. Bilgin M, Akcali Y, Oguzkaya F. Benefits of early aggressive management of empyema thoracis. *ANZ Journal of Surgery.* 2006;76(3):120-122.
- 3. Wait MA, Sharma S, Hohn J, Dal Nogare A. A randomized trial of empyema therapy. *Chest.* 1997;111(6):1548-1551.
- 4. Metin M, Yeginsu A, Sayar A, et al. Treatment of multiloculated empyema thoracis using minimally invasive methods. *Singapore Medical Journal.* 2010;51(3):242-246.
- 5. Semenkovich TR, Olsen MA, Puri V, Meyers BF, Kozower BD. Current state of empyema management. *Annals of Thoracic Surgery.* 2018;105(6):1589-1596.
- 6. Wozniak CJ, Paull DE, Moezzi JE, et al. Choice of first intervention is related to outcomes in the management of empyema. *Annals of Thoracic Surgery*. 2009;87(5):1525-1530; discussion 1530-1521.
- 7. Light RW. A new classification of parapneumonic effusions and empyema. Chest. 1995;108(2):299-301.

Question Protocol

Field	Content		
Review Question	For adults with established pleural infection, what initial drainage strategy provides the best clinical outcomes?		
Type of review question	Intervention review		
Objective of the review	In patients with infected pleural fluid that require drainage, what is the optimal initial drainage strategy of infected material, comparing standard of care (small bore chest drains <14F) with no drainage, pleural aspiration, large bore chest drain (>14F), medical thoracoscopy and surgical treatments.		
Eligibility criteria – population / disease / condition / issue / domain	Adults (18+) with established pleural infection		
Eligibility criteria – intervention(s)	Small bore chest drain (≤ 14F)		
Eligibility criteria – comparators(s)	No drainage Pleural aspiration Large bore chest drain (>14F) Medical thoracoscopy Surgery (VATS / thoracotomy)		
Outcomes and prioritisation	Mortality Need for repeat intervention Surgery Quality of life Patient symptoms Length of hospital stay Complications		
Eligibility criteria – study design	RCTs Prospective comparative studies Case series of >100 patients		
Other inclusion /exclusion criteria	Non-English language excluded unless full English translation Conference abstracts, Cochrane reviews, systematic reviews, reviews Cochrane reviews and systematic reviews can be referenced in the text, but DO NOT use in a meta-analysis		

Proposed sensitivity / subgroup analysis, or meta- regression	None			
Selection process – duplicate screening / selection / analysis	Agreement should be reached between Guideline members who are working on the question. If no agreement can be reached, a decision should be made by the Guideline co-chairs. If there is still no decision, the matter should be brought to the Guideline group and a decision will be made by consensus			
Data management (software)	RevMan5 Pairwise meta-analyses Evidence review/considered judgement. Storing Guideline text, tables, figures, etc.			
	Gradeprofiler Quality of evidence assessment			
	Gradepro Recommendations			
Information sources – databases and dates	MEDLINE, Embase, PubMED, Central Register of Controlled Trials and Cochrane Database of Systematic Reviews 1966 - present			
Methods for assessing bias at outcome / study level	RevMan5 intervention review template and NICE risk of bias checklist (follow instructions in ' <i>BTS Guideline Process Handbook – Intervention Review</i> ')			
Methods for quantitative	If 3 or more relevant studies:			
analysis – combining studies	RevMan5 for meta-analysis, heterogeneity testing and forest plots			
and exploring (in)consistency	(follow instructions in ' <i>BTS Guideline Process Handbook – Intervention Review</i> ')			
Meta-bias assessment – publication bias, selective reporting bias	GRADEprofiler Intervention review quality of evidence assessment for each outcome			
· –	(follow instructions in ' <i>BTS Guideline Process Handbook – Intervention Review</i> ')			
Rationale / context – what is known	Small bore chest drains for pleural infection remain the standard of care for initial treatment of pleural infection. What is the evidence that informs this practice?			