Online Appendix B4 BTS Guideline for Pleural Disease

Section B Investigation of the undiagnosed pleural effusion

Question B4 Evidence Review and Protocol

B4 What is the diagnostic accuracy of pleural fluid tests when diagnosing adult patients with unilateral pleural effusion?

Contents

Questi	on Evidence Review	4
Back	ground	4
Outco	omes	4
Evide	nce Review	4
1.	Secondary pleural malignancy	4
2.	Tuberculous pleural effusion (TPE)	5
3.	Heart failure	5
4.	Pleural infection (complex parapneumonic effusion (CPPE) or empyema)	6
5.	Autoimmune pleuritis	6
Evide	nce Statements	6
Reco	mmendations	6
Good	Practice Points	7
Rese	arch Recommendations	7
Meta-a	nalyses	7
Diagr	nostic accuracy table contents and summary receiver operating characteristic (SROC) curve legend	7
1.	Secondary pleural malignancy	8
	Figure B4a Cytology	8
	Figure B4b CEA (carcinoembryonic antigen)	8
	Figure B4c CYFRA 21-1 (fragment of cytokeratin 19)	9
	Figure B4d CA19-9 (carbohydrate antigen 19-9)	9
	Figure B4e CA15-3 (cancer antigen 15-3)	9
	Figure B4f CA72-4 (cancer antigen 72-4)	10
2.	Tuberculous pleural effusion (TPE)	11
	Figure B4g ADA (adenosine deaminase)	11
	Figure B4h IFN-gamma (interferon gamma)	12

3.	Heart failure	
	Figure B4i NT-proBNP (N-terminal pro hormone BNP)	
5.	Autoimmune pleuritis	
	Figure B4j ANA (antinuclear antibody)	13
Risk o	f bias summaries	15
1.	Secondary pleural malignancy	
2.	Tuberculous pleural effusion (TPE)	
3.	Heart failure	
5.	Autoimmune pleuritis	17
GRAD	E analyses	
1.	Secondary pleural malignancy	
	Cytology	
	CEA (carcinoembryonic antigen)	
	CYFRA 21-1 (fragment of cytokeratin 19)	
	CA19-9 (carbohydrate antigen 19-9)	
	CA15-3 (cancer antigen 15-3)	
	CA72-4 (cancer antigen 72-4)	
2.	Tuberculous pleural effusion (TPE)	
	ADA (adenosine deaminase)	
	IFN-gamma (interferon gamma)	
3.	Heart failure	
	NT-proBNP (N-terminal pro hormone BNP)	
5.	Autoimmune pleuritis	
•	ANA (antinuclear antibody)	
Decem		20
Recon		
Ques	stion Details	
1.	Secondary pleural malignancy	
2		
Ζ.		
		21 דר
		21 ເຊ
_		
5.		
	SUMMARY OF JUDGEMENTS	

TYPE OF RECOMMENDATION	
CONCLUSIONS	
References	
Question Protocol	

Question Evidence Review

B4 What is the diagnostic accuracy of pleural fluid tests when diagnosing adult patients with unilateral pleural effusion?

Background

Unilateral pleural effusion may result from a variety of diseases, including malignant, inflammatory, infectious and cardiovascular illnesses. Pleural fluid aspiration facilitates measurement of various disease biomarkers. If accurate, these tests may obviate the need for pleural biopsy or other investigations and facilitate early treatment initiation, including early intercostal drainage in patients with complex parapneumonic effusion or empyema.

To address this review, it was first necessary to define the disease states that are of clinical interest in adults presenting with unilateral effusion, and to define a relevant gold standard for each (<u>Table B4a</u>). The index tests reviewed vary with the target disease resulting in five sub-questions, each containing relevant index test-gold standard pairs.

Disease State	Gold Standard
Secondary pleural malignancy	Malignant fluid cytology or pleural biopsy, or malignant pleural nodules/thickening on imaging and confirmed extra-pleural primary cancer
Tuberculous pleural effusion (TPE)	Clinical composite, including definite TPE (AAFB in pleural tissue or fluid culture, or sputum AAFB plus effusion) and probable TB (granulomatous histology or lymphocytic fluid, effusion resolved after TB therapy and other causes excluded)
Heart failure	Clinical composite including reduced LVEF on echo +/- MRI
Complex parapneumonic effusion or empyema	Clinical composite including evidence of infection plus purulent fluid, positive culture or Gram's stain, fluid pH <7.2
Autoimmune pleuritis	Clinical compositive based on all available data

Table B4a: Reviewed disease state subgroups and associated gold standards

Outcomes

Diagnostic accuracy of pleural fluid tests (biomarkers) for diagnosing unilateral pleural effusion

Evidence Review

The initial literature review identified 261 studies, of which 45 were deemed relevant (please see individual sections for references). Biomarker studies that did not report or constitute an external validation cohort were excluded.

The evidence review has been split into five sections based on the five target diseases listed in Table B4a.

1. Secondary pleural malignancy

12 eligible studies reported on 12 biomarkers, but each study did not include all biomarkers.¹⁻¹¹ Reasons for study exclusion included use of an inappropriate gold standard (e.g. negative cytology but visceral malignancy elsewhere) or early phase biomarkers. All mesothelioma studies were excluded. Meta-analyses were possible for cytology¹⁻⁷ (Figure B4a) and five protein biomarkers (CEA^{4,6-12}, CYFRA21-1^{4,10,12}, CA19-9^{6,10,11}, CA15-3^{6,7,9-12} and CA72-4^{6,7,11}) (Figure B4b, Figure B4c, Figure B4d, Figure B4e and Figure B4f respectively).

The pooled sensitivity of fluid cytology was low (0.46 [0.40, 0.52] [95% confidence intervals]) but highly specific, with positive results obviating the need for further diagnostic sampling (<u>Table B4b</u>). However, this analysis did not address the quality of predictive information provided (e.g. for response to targeted cancer therapies).

All protein biomarkers offered poor sensitivity (<u>Table B4b</u>). Although specificity was generally high (all pooled estimates ≥ 0.88 , Table 6), positive results would not obviate the requirement for tissue sampling, further limiting clinical utility.

Table B4b: Summary of secondary pleural malignancy biomarker point estimate sensitivities and specificities

Biomarker	Contributing studies (n)	Sensitivity [95% CI]	Specificity [95% CI]
Cytology ¹⁻⁷	7	0.46 [0.40, 0.52]	<u>1.00 [0.00, 1.00]</u>
CEA ^{4,6-12}	8	<u>0.54 [0.40, 0.68]</u>	<u>1.00 [0.96, 1.00]</u>
CYFRA 21-1 ^{4,10,12}	3	0.58 [0.48, 0.67]	0.88 [0.78, 0.94]
CA19-9 ^{6,10,11}	3	0.22 [0.18 0.27]	1.00 [0.00,1.00]
CA15-3 ^{6,7,9-12}	6	<u>0.44 [0.39, 0.50]</u>	<u>0.99 [0.97, 1.00]</u>
CA72-4 ^{6,7,11}	3	0.38 [0.30, 0.46]	<u>0.99 [0.97, 1.00]</u>

CA 15-3 – cancer antigen 15-3; CA 19-9 – carbohydrate antigen 19-9; CA72-4 – cancer antigen 72-4; CEA – carcinoembryonic antigen; CI – confidence intervals; CYFRA 21-1 – fragment of cytokeratin 19

2. Tuberculous pleural effusion (TPE)

Twenty-four studies looked at tuberculous pleural effusion (TPE).¹³⁻³⁶ All evaluated adenosine deaminase (ADA) as a single marker, or in combination with other tests in a mixture of blood and pleural fluid. Reasons for study exclusion included recruitment of selected populations (e.g. lymphocytic effusion) and use of serum markers. Only data regarding pleural fluid measurements were extracted from included studies, allowing meta-analyses of two markers, ADA¹³⁻³⁶ (Figure B4g) and interferon gamma (IFN-gamma)^{14,16,20-22,36} (Figure B4h).

The sensitivity and specificity of ADA and IFN-gamma were notably high and most studies were reasonably sized (<u>Table B4c</u>). However, the prevalence of TPE was >10% in all but two studies and very high in some (\geq 70% in three studies). Greater imprecision was notable in the performance estimates of the two lowest prevalence studies contributing to ADA.^{15,32}

Table B4c: Summary of tuberculous pleural effusion biomarker point estimate sensitivities and specificities

Biomarker	Contributing studies (n)	Sensitivity [95% CI]	Specificity [95% CI]
ADA ¹³⁻³⁶	24	0.91 [0.87, 0.93]	<u>0.88 [0.86, 0.93]</u>
IFN-gamma ^{14,16,20-22,36}	6	0.95 [0.85, 0.98]	<u>0.96 [0.90, 0.98]</u>

ADA - adenosine deaminase; CI - confidence intervals; IFN-gamma - interferon gamma

3. Heart failure

Five studies evaluated N-terminal pro hormone BNP (NT-proBNP) for diagnosing pleural effusion in heart failure, but each used a different cut-point to define a positive test result. A summary of the cut-points is provided in <u>Table B4d</u>. Meta-analysis of these studies gave a pooled sensitivity of <u>0.93 [0.88, 0.96]</u> and pooled specificity of <u>0.93 [0.86, 0.97]</u> [95% confidence intervals] (Figure B4i).³⁷⁻⁴¹

Table B4d: Heart failure N-terminal pro hormone BNP (NT-proBNP) cut-point per study

Study	Cut-point
Kolditz 2006 ³⁷	4000 ng/L
Han 2008 ³⁸	1714 pg/ml
Bayram 2009 ³⁹	925 ng/L
Porcel 200940	1300 pg/ml
Valdes 2011 ⁴¹	1409 pg/ml

4. Pleural infection (complex parapneumonic effusion (CPPE) or empyema)

There were no studies that directly investigated the diagnostic accuracy of pleural fluid tests for diagnosing pleural infection (complex parapneumonic effusion (CPPE) or empyema). This was primarily due to the use of inappropriate reference standards, failure to adequately describe reference standards used, discovery biomarker analyses without validation and the use of biomarkers for prognostic, not diagnostic, analyses.

5. Autoimmune pleuritis

Four studies evaluated pleural fluid antinuclear antibody (ANA) as a biomarker of lupus pleuritic and metaanalysis of the results gave a pooled sensitivity of 0.94 [0.72, 0.99] and a pooled specificity of 0.87 [0.77, 0.93] [95% confidence intervals] relative to cases with non-lupus effusion (Figure B4j).⁴²⁻⁴⁵

Evidence Statements

Pleural fluid biomarkers do not provide improved sensitivity, when compared with cytology, for diagnosing secondary pleural malignancy (<u>Low</u>)

Pleural fluid adenosine deaminase (ADA) and interferon gamma (IFN-gamma) provide high sensitivity and specificity for diagnosing tuberculous pleural effusion (<u>Very Low</u>)

Pleural fluid N-terminal pro hormone pro-brain natriuretic peptide (NT-proBNP) provides high sensitivity and specificity for diagnosing heart failure in unilateral pleural effusion patients (<u>Very Low</u>)

Pleural fluid antinuclear antibody (ANA) provides high sensitivity and specificity for diagnosing lupus pleural effusion (<u>Low</u>)

Recommendations

- Pleural fluid cytology should be used as an initial diagnostic test in patients with suspected secondary pleural malignancy, accepting that a negative cytology should lead to consideration of further investigation (<u>Conditional</u>)
- > Pleural fluid biomarkers should not be used for diagnosing secondary pleural malignancy (Conditional)
- In high prevalence populations, pleural fluid adenosine deaminase (ADA) and/or interferon gamma (IFNgamma) test(s) can be considered for diagnosing tuberculous pleural effusion (<u>Conditional</u>)
- In low prevalence populations, pleural fluid adenosine deaminase (ADA) can be considered as an exclusion test for tuberculous pleural effusion (<u>Conditional</u>)
- Tissue sampling for culture and sensitivity should be the preferred option for all patients with suspected tuberculous pleural effusion (Strong – by consensus)
- Pleural fluid antinuclear antibody (ANA) should be considered to support a diagnosis of lupus pleuritis (<u>Conditional</u>)

Good Practice Points

- ✓ The clinical utility of pleural fluid cytology varies by tumour sub-type, including diagnostic sensitivity and predictive value for response to subsequent cancer therapies. This should be taken into consideration when planning the most suitable diagnostic strategy (for example, direct biopsies in those with a likely low cytological yield can be considered)
- Pleural fluid N-terminal pro brain natriuretic peptide (NT-proBNP) is useful when considering heart failure as a cause in unilateral pleural effusions but not superior to serum NT-proBNP and therefore should not be ordered routinely

Research Recommendations

- Further research is needed to determine the clinical utility of pleural fluid cytology, as defined by combined diagnostic and predictive value, in individual tumour sub-types
- Further research is needed into determining the diagnostic value of pleural fluid markers for tuberculous pleural effusion, heart failure and auto-immune pleuritis, to improve the strength of the clinical recommendations

Meta-analyses

Diagnostic accuracy table contents and summary receiver operating characteristic (SROC) curve legend

Table contents

Pooled sensitivity [95% confidence intervals]

Pooled specificity [95% confidence intervals]

Likelihood ratio of a positive test result (LR+) [95% confidence intervals]

Likelihood ratio of a negative test result (LR-) [95% confidence intervals]

Diagnostic odds ratio (DOR, an indicator of the likelihood of a positive test result) [95% confidence intervals]

Summary receiver operating characteristic (SROC) curve legend

- SROC
- Study estimate
- Summary point
- 95% confidence region
- --- 95% prediction region

1. Secondary pleural malignancy

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% Cl)	Sensitivity (95% CI)	Specificity (95% CI)
Arnold 2018	237	0	278	406	0.46 [0.42, 0.50]	1.00 [0.99, 1.00]	+	•
Loveland 2018	41	0	20	92	0.67 [0.54, 0.79]	1.00 [0.96, 1.00]		•
Mercer 2020	162	0	163	673	0.50 [0.44, 0.55]	1.00 [0.99, 1.00]	-	•
Sun 2014	22	0	36	40	0.38 [0.26, 0.52]	1.00 [0.91, 1.00]		-
Tsim 2019	87	0	151	125	0.37 [0.30, 0.43]	1.00 [0.97, 1.00]	-	•
Villena 1996	28	0	37	142	0.43 [0.31, 0.56]	1.00 [0.97, 1.00]		•
Villena 2003	46	0	55	151	0.46 [0.36, 0.56]	1.00 [0.98, 1.00]		

Figure B	4a (Cvtology
i iguic b	τα 🕻	JUDIOGY

Pooled Sensitivity	0.461	[0.401, 0.522]
Pooled Specificity	1.000	[0.000, 1.000]
LR+	∞	[NaN, NaN]
LR-	0.539	[NaN, NaN]
DOR	∞	[NaN, NaN]

NaN – not a number

Figure B4b CEA (carcinoembryonic antigen)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Ji 2018	51	11	6	82	0.89 [0.78, 0.96]	0.88 [0.80, 0.94]		
Porcel 2017	225	0	324	1026	0.41 [0.37, 0.45]	1.00 [1.00, 1.00]	+	
Shitrit 2005	28	1	16	71	0.64 [0.48, 0.78]	0.99 [0.93, 1.00]		-
Sun 2014	28	2	30	38	0.48 [0.35, 0.62]	0.95 [0.83, 0.99]		-
Trape 2017	45	0	- 77	280	0.37 [0.28, 0.46]	1.00 [0.99, 1.00]		
Villena 1996	28	0	37	142	0.43 [0.31, 0.56]	1.00 [0.97, 1.00]		
Villena 2003	35	0	66	151	0.35 [0.25, 0.45]	1.00 [0.98, 1.00]	-	
Wagner 2007	25	5	11	44	0.69 [0.52, 0.84]	0.90 [0.78, 0.97]		

Pooled Sensitivity	0.543	[0.404, 0.675]
Pooled Specificity	0.996	[0.961, 1.000]
LR+	129.616	[-143.686, 402.918]
LR-	0.459	[0.322, 0.596]
DOR	282.412	[-271.203, 836.028]

Figure B4c CYFRA 21-1 (fragment of cytokeratin 19)

Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Shitrit 2005	26	14	18	58	0.59 [0.43, 0.74]	0.81 [0.70, 0.89]		
Sun 2014	26	2	32	38	0.45 [0.32, 0.58]	0.95 [0.83, 0.99]		
Wagner 2007	25	5	11	44	0.69 [0.52, 0.84]	0.90 [0.78, 0.97]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Pooled Sen	sitiv	ity		0.	578 [0	.477, 0.674]		
Pooled Spe	cific	ity		0.	885 [C	.782, 0.943]		
LR+				5.	042 [1	.831, 8.252]		
LR-				0.	476 [0	.371, 0.582]		
DOR				10.	588 [2	863, 18.314]		

Figure B4d CA19-9 (carbohydrate antigen 19-9)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Shitrit 2005	11	0	33	72	0.25 [0.13, 0.40]	1.00 [0.95, 1.00]		-
Trape 2017	62	0	218	122	0.22 [0.17, 0.27]	1.00 [0.97, 1.00]	+	•
Villena 1996	13	0	52	142	0.20 [0.11, 0.32]	1.00 [0.97, 1.00]	0 0.2 0.4 0.6 0.8 1	
Pooled Se	nsiti	vity		0.2	221 [0.1	183, 0.265]		
Pooled Sp	ecifi	city		1.0	000 [0.0	000, 1.000]		
LR+				c	∞ [-∞	,∞]		
LR-				0.7	779 [0.7	738, 0.820]		
DOR				c	∞ [-∞	,∞]		

Figure B4e CA15-3 (cancer antigen 15-3)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Porcel 2017	220	0	329	1026	0.40 [0.36, 0.44]	1.00 [1.00, 1.00]	+	•
Shitrit 2005	18	2	26	70	0.41 [0.26, 0.57]	0.97 [0.90, 1.00]		-
Trape 2017	106	0	174	122	0.38 [0.32, 0.44]	1.00 [0.97, 1.00]	-	•
Villena 1996	29	1	36	141	0.45 [0.32, 0.57]	0.99 [0.96, 1.00]		•
Villena 2003	44	2	57	149	0.44 [0.34, 0.54]	0.99 [0.95, 1.00]		-
Wagner 2007	24	5	12	44	0.67 [0.49, 0.81]	0.90 [0.78, 0.97]		

Pooled Sensitivity	0.444	[0.387, 0.503]
Pooled Specificity	0.994	[0.966, 0.999]
LR+	76.255	[-54.570, 207.080]
LR-	0.559	[0.503, 0.615]
DOR	136.410	[-92.434, 365.255]

Figure B4f CA72-4 (cancer antigen 72-4)

Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Trape 2017	92	0	188	122	0.33 [0.27, 0.39]	1.00 [0.97, 1.00]	-	-
Villena 1996	33	3	32	139	0.51 [0.38, 0.63]	0.98 [0.94, 1.00]		•
Villena 2003	35	3	66	148	0.35 [0.25, 0.45]	0.98 [0.94, 1.00]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Pooled Sensitivity	0.380	[0.303, 0.464]
Pooled Specificity	0.987	[0.965, 0.995]
LR+	28.955	[1.324, 56.586]
LR-	0.628	[0.548, 0.708]
DOR	46.124	[1.747, 90.501]

2. Tuberculous pleural effusion (TPE)

~				-	0	0	0	0
Study	IP	FΡ	FN	IN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Abrao 2014	155	11	19	124	0.89 [0.83, 0.93]	0.92 [0.86, 0.96]	-	-
Ambade 2011	38	8	10	25	0.79 [0.65, 0.90]	0.76 [0.58, 0.89]		
Arnold 2015	6	30	1	301	0.86 [0.42, 1.00]	0.91 [0.87, 0.94]		•
Chung 2017	93	14	13	216	0.88 [0.80, 0.93]	0.94 [0.90, 0.97]	-	-
Demirer 2012	137	26	20	68	0.87 [0.81, 0.92]	0.72 [0.62, 0.81]	-	
Garcia-Zamalloa 2012	65	28	8	371	0.89 [0.80, 0.95]	0.93 [0.90, 0.95]		•
He 2015	109	6	27	74	0.80 [0.72, 0.86]	0.93 [0.84, 0.97]		
Kalantri 2011	122	4	32	46	0.79 [0.72, 0.85]	0.92 [0.81, 0.98]	-	
Khan 2013	62	8	10	23	0.86 [0.76, 0.93]	0.74 [0.55, 0.88]		
Klimiuk 2015	39	28	5	370	0.89 [0.75, 0.96]	0.93 [0.90, 0.95]		•
Kosar 2015	44	16	6	35	0.88 [0.76, 0.95]	0.69 [0.54, 0.81]		
Liao 2014	157	7	124	44	0.56 [0.50, 0.62]	0.86 [0.74, 0.94]	+	
Neves 2007	99	19	5	92	0.95 [0.89, 0.98]	0.83 [0.75, 0.89]	-	-
Ogata 2011	107	40	17	271	0.86 [0.79, 0.92]	0.87 [0.83, 0.91]		+
Perez-Rodriguez 1999	24	6	3	70	0.89 [0.71, 0.98]	0.92 [0.84, 0.97]		-
Porcel 2010	55	50	4	446	0.93 [0.84, 0.98]	0.90 [0.87, 0.92]		-
Riantawan 1999	95	4	5	93	0.95 [0.89, 0.98]	0.96 [0.90, 0.99]	-	-
Sahn 2013	537	30	11	393	0.98 [0.96, 0.99]	0.93 [0.90, 0.95]	•	•
Sivakumar 2017	26	17	1	88	0.96 [0.81, 1.00]	0.84 [0.75, 0.90]		
Skouras 2015	9	22	1	89	0.90 [0.55, 1.00]	0.80 [0.72, 0.87]		
Tay 2013	75	14	5	66	0.94 [0.86, 0.98]	0.82 [0.72, 0.90]	-	
Tural Onur 2015	44	13	8	55	0.85 [0.72, 0.93]	0.81 [0.70, 0.89]		
Valdes 1996	76	25	0	249	1.00 [0.95, 1.00]	0.91 [0.87, 0.94]	-	•
Valdes 2014	69	25	1	336	0.99 [0.92, 1.00]	0.93 [0.90, 0.95]	· · · · · · · · · · · · · · · · · · ·	
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure B4g ADA (adenosine deaminase)

Pooled Sensitivity	0.905	[0.865, 0.933]
Pooled Specificity	0.883	[0.856, 0.906]
LR+	7.744	[5.980, 9.508]
LR-	0.108	[0.069, 0.147]
DOR	71.693	[35.089, 108.298]

Figure B4h IFN-gamma (interferon gamma)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Ambade 2011	42	5	6	28	0.88 [0.75, 0.95]	0.85 [0.68, 0.95]		
Chung 2017	100	12	6	219	0.94 [0.88, 0.98]	0.95 [0.91, 0.97]	-	•
Kalantri 2011	129	2	25	48	0.84 [0.77, 0.89]	0.96 [0.86, 1.00]	+	
Khan 2013	72	0	0	31	1.00 [0.95, 1.00]	1.00 [0.89, 1.00]	-	
Klimiuk 2015	43	4	1	394	0.98 [0.88, 1.00]	0.99 [0.97, 1.00]		•
Valdes 2014	63	32	7	329	0.90 [0.80, 0.96]	0.91 [0.88, 0.94]		

Pooled Sensitivity	0.947	[0.851, 0.982]
Pooled Specificity	0.959	[0.899, 0.984]
LR+	23.363	[0.339, 46.388]
LR-	0.055	[-0.006, 0.117]
DOR	421.957	[-422.547, 1266.461]

3. Heart failure

Figure B4i

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bayram 2009	48	- 4	3	78	0.94 [0.84, 0.99]	0.95 [0.88, 0.99]		-
Han 2008	78	2	4	156	0.95 [0.88, 0.99]	0.99 [0.96, 1.00]	-	•
Kolditz 2006	23	- 5	2	63	0.92 [0.74, 0.99]	0.93 [0.84, 0.98]		
Porcel 2009	86	9	4	82	0.96 [0.89, 0.99]	0.90 [0.82, 0.95]	-	-
Valdes 2011	80	61	14	243	0.85 [0.76, 0.92]	0.80 [0.75, 0.84]		

NT-proBNP (N-terminal pro hormone BNP)

Pooled Sensitivity	0.931	[0.880, 0.961]
Pooled Specificity	0.932	[0.860, 0.969]
LR+	13.783	[2.971, 24.595]
LR-	0.074	[0.030, 0.118]
DOR	185.717	[-49.979, 421.413]

5. Autoimmune pleuritis

Figure B4i	ANA	antinuclear	antibody)
i igai o D-ij	/	annaoioai	and so ay,

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Khare 1994	6	8	2	66	0.75 [0.35, 0.97]	0.89 (0.80, 0.95)		
Porcel 2007	15	16	0	235	1.00 [0.78, 1.00]	0.94 [0.90, 0.96]		•
Toworakul 2011	11	7	1	35	0.92 [0.62, 1.00]	0.83 [0.69, 0.93]		
Wang 2000	7	32	0	87	1.00 [0.59, 1.00]	0.73 [0.64, 0.81]		

98.995

DOR

[-89.290, 287.281]

Risk of bias summaries

1. Secondary pleural malignancy

2. Tuberculous pleural effusion (TPE)

3. Heart failure

5. Autoimmune pleuritis

	Risk of Bias			Appl	icabili	ty Con	cerns			
	Patient Selection	Index Test	Reference Standard	Flow and Timing	Patient Selection	Index Test	Reference Standard			
Khare 1994	٠	•	?	•	•	•	?			
Porcel 2007	•	?	?	•	•	•	•			
Towurakul 2011	?	?	?	•	?	•	•			
Wang 2000	•	•	•	•	?	•	•			
e High		(<mark>?</mark> Ur	nclear			+ Lov	V		

GRADE analyses

1. Secondary pleural malignancy

Cytology

What is the diagnostic accuracy of pleural fluid tests when diagnosing adult patients with unilateral pleural effusion?

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: Cytology

Pooled sensitivity: 0.46 (95% CI: 0.40 to 0.52) | Pooled specificity: 1.00 (95% CI: 0.00 to 1.00)

Test result	Number of results per 1,000 patients tested (95% CI) Prevalence 45% Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives	207 (180 to 235) 243 (215 to 270)	1363 (7)	⊕⊕⊖⊖ LOW ª,b
True negatives	550 (1 to 550)	1629 (7)	⊕⊕⊖⊖ LOW ^{a,b}
CI: Confidence interval	0 (0 (0 349)	(*)	
Explanations a. Some risk of bias acr b. Some indirectness ac	oss studies cross studies		

CEA (carcinoembryonic antigen)

What is the diagnostic accuracy of pleural fluid tests when diagnosing adult patients with unilateral pleural effusion?

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: CEA (carcinoembryonic antigen)

Pooled sensitivity: 0.54 (95% CI: 0.40 to 0.68) | Pooled specificity: 1.00 (95% CI: 0.96 to 1.00)

Test result	Number of results per 1,000 patients tested (95% Cl) Prevalence 45%* Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives False negatives	244 (182 to 304) 206 (146 to 268)	1032 (8)	⊕⊖⊖⊖ VERY LOW ^{a,b,c}
True negatives False positives CI: Confidence interval	548 (529 to 550) 2 (0 to 21)	1853 (8)	OOO VERY LOW ^{a,b,c}
Explanations a. Serious risk of bias ac b. Some indirectness ac	cross studies ross studies		

c. Some inconsistency across sensitivities

* Mean prevalence across 8 studies

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: CYFRA 21-1 (fragment of cytokeratin 19)

Pooled sensitivity: 0.58 (95% CI: 0.48 to 0.67) | Pooled specificity: 0.88 (95% CI: 0.78 to 0.94)

Test result	Number of results per 1,000 patients tested (95% Cl) Prevalence 46%* Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives	266 (219 to 310)	138	
False negatives	194 (150 to 241)	(3)	
True negatives	478 (422 to 509)	161	$\oplus 000$
False positives	62 (31 to 118)	(3)	VERY LOW a,b,c
CI: Confidence interval			

Explanations

a. Serious risk of bias across studies

b. Some indirectness across studies

c. Some inconsistency across sensitivities

* Mean prevalence across 3 studies

CA19-9 (carbohydrate antigen 19-9)

What is the diagnostic accuracy of pleural fluid tests when diagnosing adult patients with unilateral pleural effusion?

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: CA19-9 (carbohydrate antigen 19-9)

Pooled sensitivity: 0.22 (95% CI: 0.18 to 0.27) | Pooled specificity: 1.00 (95% CI: 0.00 to 1.00)

Test result	Number of results per 1,000 patients tested (95% CI) Prevalence 44%* Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives False negatives	97 (81 to 117) 343 (323 to 359)	389 (3)	⊕⊕⊕⊖ MODERATE ª
True negatives False positives	560 (6 to 560) 0 (0 to 554)	336 (3)	⊕⊕⊕⊖ MODERATE ª
CI: Confidence interval			
Explanations			

a. Some risk of bias across studies

* Mean prevalence across 3 studies

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: CA15-3 (cancer antigen 15-3)

Pooled sensitivity: 0.44 (95% CI: 0.39 to 0.50) | Pooled specificity: 0.99 (95% CI: 0.97 to 1.00)

Test result	Number of results per 1,000 patients tested (95% CI) Prevalence 43% Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives False negatives	191 (166 to 216) 239 (214 to 264)	1075 (6)	⊕⊖⊖⊖ VERY LOW ^{a,b}
True negatives False positives CI: Confidence interval	567 (551 to 569) 3 (1 to 19)	1562 (6)	⊕⊖⊖⊖ VERY LOW ^{a,b}
Explanations	orace studios		

a. Serious risk of bias across studiesb. Some indirectness across studies

b. Some maneciness across studies

* Mean prevalence across 8 studies

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: CA72-4 (cancer antigen 72-4)

Pooled sensitivity: 0.38 (95% CI: 0.30 to 0.46) | Pooled specificity: 0.99 (95% CI: 0.97 to 1.00)

Test result	Number of results per 1,000 patients tested (95% CI) Prevalence 47%* Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives	179 (142 to 218)	446	$\oplus \oplus \bigcirc \bigcirc$
False negatives	291 (252 to 328)	(3)	LOW ^{a,b}
True negatives	523 (511 to 527)	415	$\oplus \oplus \bigcirc \bigcirc$
False positives	7 (3 to 19)	(3)	LOW ^{a,b}
-	Prevalence 31%* Typically seen in		
True positives	118 (94 to 144)	446	$\oplus \oplus \bigcirc \bigcirc$
False negatives	192 (166 to 216)	(3)	LOW ^{a,b}
True negatives	681 (666 to 687)	415	$\oplus \oplus \bigcirc \bigcirc$
False positives	9 (3 to 24)	(3)	LOW ^{a,b}
	Prevalence 70%* Typically seen in		
True positives	266 (212 to 325)	446	$\oplus \oplus \bigcirc \bigcirc$
False negatives	434 (375 to 488)	(3)	LOW ^{a,b}
True negatives	296 (290 to 299)	415	$\oplus \oplus \bigcirc \bigcirc$
False positives	4 (1 to 10)	(3)	LOW ^{a,b}
CI: Confidence interval			
Explanations			

Explanations

a. Some risk of bias across studiesb. Some inconsistency across sensitivities

* Mean (47%), lowest (31%) and highest (70%) prevalence across 3 studies

2. Tuberculous pleural effusion (TPE)

ADA (adenosine deaminase)

What is the diagnostic accuracy of pleural fluid tests when diagnosing adult patients with unilateral pleural effusion?

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: ADA (adenosine deaminase)

Pooled sensitivity: 0.91 (95% CI: 0.87 to 0.93) | Pooled specificity: 0.88 (95% CI: 0.86 to 0.91)

Test result	Number of results per 1,000 patients tested (95% CI) Prevalence 40%* Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives	362 (346 to 373)	2579	⊕⊖⊖⊖
False negatives	38 (27 to 54)	(24)	VERY LOW ^{a,b}
True negatives	530 (514 to 544)	4396	⊕⊖⊖⊖
False positives	70 (56 to 86)	(24)	VERY LOW ^{a,b}
	Prevalence 2%* Typically seen in		
True positives	18 (17 to 19)	2579	UERY LOW a,b
False negatives	2 (1 to 3)	(24)	
True negatives	865 (839 to 888)	4396	UERY LOW a,b
False positives	115 (92 to 141)	(24)	
	Prevalence 8%* Typically seen in		
True positives	72 (69 to 75)	2579	⊕⊖⊖⊖
False negatives	8 (5 to 11)	(24)	VERY LOW ^{a,b}
True negatives	812 (788 to 834)	4396	UERY LOW ^{a,b}
False positives	108 (86 to 132)	(24)	
CI: Confidence interval			
Explanations			

a. Serious risk of bias across studiesb. Serious indirectness across

* Typical prevalence in 22/24 studies (40%); 1/24 studies (2%); 1/24 studies (8%)

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: IFN-gamma (interferon gamma)

Pooled sensitivity: 0.95 (95% CI: 0.85 to 0.98) | Pooled specificity: 0.96 (95% CI: 0.90 to 0.98)

Test result	Number of results per 1,000 patients tested (95% CI) Prevalence 43%* Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives	407 (366 to 422)	494	000
False negatives	23 (8 to 64)	(6)	
True negatives	547 (512 to 561)	1104	$\oplus 000$
False positives	23 (9 to 58)	(6)	VERY LOW a,b
	Prevalence 70%* Typically seen in		
True positives	663 (596 to 687)	494	000
False negatives	37 (13 to 104)	(6)	VERY LOW a,b
True negatives	288 (270 to 295)	1104	$\oplus 000$
False positives	12 (5 to 30)	(6)	VERY LOW a,b
	Prevalence 13%* Typically seen in		
True positives	123 (111 to 128)	494	000
False negatives	7 (2 to 19)	(6)	VERY LOW a,b
True negatives	834 (782 to 856)	1104	$\oplus 000$
False positives	36 (14 to 88)	(6)	VERY LOW a,b
CI: Confidence interval			
Explanations			

a. Serious risk of bias across studies

b. Some indirectness across

* Mean prevalence across 6 studies (43%); typical prevalence in 2/6 studies (70%); 2/6 studies (13%)

3. Heart failure

NT-proBNP (N-terminal pro hormone BNP)

What is the diagnostic accuracy of pleural fluid tests when diagnosing adult patients with unilateral pleural effusion?

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: NT-proBNP (N-terminal pro hormone BNP)

Pooled sensitivity: 0.93 (95% CI: 0.88 to 0.96) | Pooled specificity: 0.93 (95% CI: 0.86 to 0.97)

Test result	Number of results per 1,000 patients tested (95% CI) Prevalence 32%* Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives	298 (282 to 308)	342	UERY LOW ^{a,b}
False negatives	22 (12 to 38)	(5)	
True negatives	634 (585 to 659)	703	UERY LOW ^{a,b}
False positives	46 (21 to 95)	(5)	
	Prevalence 20%* Typically seen in		
True positives	186 (176 to 192)	342	UERY LOW ^{a,b}
False negatives	14 (8 to 24)	(5)	
True negatives	746 (688 to 775)	703	UERY LOW ^{a,b}
False positives	54 (25 to 112)	(5)	
	Prevalence 50%* Typically seen in		
True positives	466 (440 to 481)	342	UERY LOW a,b
False negatives	34 (19 to 60)	(5)	
True negatives	466 (430 to 485)	703	⊕○○○
False positives	34 (15 to 70)	(5)	VERY LOW ^{a,b}
CI: Confidence interval Explanations			

a. Serious risk of bias across studiesb. Some indirectness across studies

* Mean (32%), lowest (20%) and highest (50%) prevalence across 5 studies

5. Autoimmune pleuritis

ANA (antinuclear antibody)

What is the diagnostic accuracy of pleural fluid tests when diagnosing adult patients with unilateral pleural effusion?

Patient or population: Adults aged 18+ with unilateral pleural effusion

New test: ANA (antinuclear antibody)

Pooled sensitivity: 0.94 (95% CI: 0.72 to 0.99) | Pooled specificity: 0.87 (95% CI: 0.77 to 0.93)

Test result	Number of results per 1,000 patients tested (95% CI) Prevalence 11%* Typically seen in	Number of participants (studies)	Certainty of the Evidence (GRADE)
True positives False negatives True negatives False positives	103 (80 to 109) 7 (1 to 30) 772 (684 to 825) 118 (65 to 206)	42 (4) 486 (2)	⊕⊕⊖⊖ LOW ^{a,b} ⊕⊕⊖⊖ LOW ^{a,b}
	Prevalence 6%* Typically seen in		
True positives False negatives True negatives False positives	56 (43 to 59) 4 (1 to 17) 815 (722 to 871) 125 (69 to 218)	42 (4) 486 (2)	⊕⊕⊖⊖ LOW ^{a,b} ⊕⊕⊖⊖ LOW ^{a,b}
	Prevalence 22%* Typically seen in		
True positives False negatives True negatives False positives CI: Confidence interval	206 (159 to 218) 14 (2 to 61) 676 (599 to 723) 104 (57 to 181)	42 (4) 486 (2)	 ⊕⊕⊖⊖ LOW ^{a,b} ⊕⊕⊖⊖ LOW ^{a,b}
Explanations			

a. Some risk of bias across studies

b. Some indirectness across studies

* Mean (11%), lowest (6%) and highest (22%) prevalence across 4 studies

Recommendation Tables

Question Details

POPULATION:	Adults (18+) with unilateral pleural effusion
INDEX TESTS:	Pleural fluid tests
GOLD STANDARD:	Clinico-pathology
OUTCOME:	Diagnostic accuracy of pleural fluid tests for diagnosing unilateral pleural effusion

1. Secondary pleural malignancy

SUMMARY OF JUDGEMENTS

	JUDGEMENT						
PROBLEM	No	Probably no	Probably yes	Yes		Varies	Don't know
TEST ACCURACY	Very inaccurate	Inaccurate	Accurate	Very accurate		Varies	Don't know
DESIRABLE EFFECTS	Trivial	Small	Moderate	Large		Varies	Don't know
UNDESIRABLE EFFECTS	Large	Moderate	Small	Trivial		Varies	Don't know
CERTAINTY OF EVIDENCE	Very low	Low	Moderate	High			No included studies
BALANCE OF EFFECTS	Favours the comparison	Probably favours the comparison	Does not favour the intervention or the comparison	Probably favours the intervention	Favours the intervention	Varies	Don't know

TYPE OF RECOMMENDATION

Strong recommendation against the intervention	Conditional recommendation against the intervention	Conditional recommendation for either the intervention or the comparison	Conditional recommendation for the intervention	Strong recommendation for the intervention
	\boxtimes			

CONCLUSIONS

Recommendation

Pleural fluid cytology should be used as an initial diagnostic test in patients with suspected secondary pleural malignancy, accepting that a negative cytology should lead to consideration of further investigation Pleural fluid biomarkers should not be used for diagnosing secondary pleural malignancy

Justification

Pleural fluid biomarkers do not provide improved sensitivity, when compared with cytology, for diagnosing secondary pleural malignancy (Low)

Subgroup considerations

All data were considered as subgroups

Research priorities

Further research is needed to determine the clinical utility of pleural fluid cytology, as defined by combined diagnostic and predictive value, in individual tumour sub-types

2. Tuberculous pleural effusion (TPE)

SUMMARY OF JUDGEMENTS

	JUDGEMENT						
PROBLEM	No	Probably no	Probably yes	Yes		Varies	Don't know
TEST ACCURACY	Very inaccurate	Inaccurate	Accurate	Very accurate		Varies	Don't know
DESIRABLE EFFECTS	Trivial	Small	Moderate	Large		Varies	Don't know
UNDESIRABLE EFFECTS	Large	Moderate	Small	Trivial		Varies	Don't know
CERTAINTY OF EVIDENCE	Very low	Low	Moderate	High			No included studies
BALANCE OF EFFECTS	Favours the comparison	Probably favours the comparison	Does not favour the intervention or the comparison	Probably favours the intervention	Favours the intervention	Varies	Don't know

TYPE OF RECOMMENDATION

Strong recommendation against the intervention	Conditional recommendation against the intervention	Conditional recommendation for either the intervention or the comparison	Conditional recommendation for the intervention	Strong recommendation for the intervention
			\boxtimes	

CONCLUSIONS

Recommendation

In high prevalence populations, pleural fluid adenosine deaminase (ADA) and/or interferon gamma (IFN-gamma) test(s) can be considered for diagnosing tuberculous pleural effusion

In low prevalence populations, pleural fluid adenosine deaminase (ADA) can be considered as an exclusion test for tuberculous pleural effusion

Justification

Pleural fluid adenosine deaminase (ADA) and interferon gamma (IFN-gamma) provide high sensitivity and specificity for diagnosing tuberculous pleural effusion (<u>Very Low</u>)

Subgroup considerations

All data were considered as subgroups

Research priorities

Further research is needed into determining the diagnostic value of pleural fluid markers for tuberculous pleural effusion to improve the strength of the clinical recommendations

5. Autoimmune pleuritis

SUMMARY OF JUDGEMENTS

	JUDGEMENT						
PROBLEM	No	Probably no	Probably yes	Yes		Varies	Don't know
TEST ACCURACY	Very inaccurate	Inaccurate	Accurate	Very accurate		Varies	Don't know
DESIRABLE EFFECTS	Trivial	Small	Moderate	Large		Varies	Don't know
UNDESIRABLE EFFECTS	Large	Moderate	Small	Trivial		Varies	Don't know
CERTAINTY OF EVIDENCE	Very low	Low	Moderate	High			No included studies
BALANCE OF EFFECTS	Favours the comparison	Probably favours the comparison	Does not favour the intervention or the comparison	Probably favours the intervention	Favours the intervention	Varies	Don't know

TYPE OF RECOMMENDATION

Strong recommendation against the intervention	Conditional recommendation against the intervention	Conditional recommendation for either the intervention or the comparison	Conditional recommendation for the intervention	Strong recommendation for the intervention
			\boxtimes	

CONCLUSIONS

Recommendation

Pleural fluid antinuclear antibody (ANA) should be considered to support a diagnosis of lupus pleuritis

Justification

Pleural fluid antinuclear antibody (ANA) provides high sensitivity and specificity for diagnosing lupus pleural effusion (Low)

Subgroup considerations

All data were considered as subgroups

Research priorities

Further research is needed into determining the diagnostic value of pleural fluid markers for auto-immune pleuritis to improve the strength of the clinical recommendations

References

- 1. Arnold DT, De Fonseka D, Perry S, et al. Investigating unilateral pleural effusions: the role of cytology. *Eur Respir J.* 2018;52(5).
- 2. Loveland P, Christie M, Hammerschlag G, Irving L, Steinfort D. Diagnostic yield of pleural fluid cytology in malignant effusions: an Australian tertiary centre experience. *Intern Med J.* 2018;48(11):1318-1324.
- 3. Mercer RM, Varatharajah R, Shepherd G, et al. Critical analysis of the utility of initial pleural aspiration in the diagnosis and management of suspected malignant pleural effusion. *BMJ Open Respiratory Research*. 2020;7(1).
- 4. Sun W, Li J, Jiang HG, Ge LP, Wang Y. Diagnostic value of MUC1 and EpCAM mRNA as tumor markers in differentiating benign from malignant pleural effusion. *QJM*. 2014;107(12):1001-1007.
- 5. Tsim S, Paterson S, Cartwright D, et al. Baseline predictors of negative and incomplete pleural cytology in patients with suspected pleural malignancy Data supporting 'Direct to LAT' in selected groups. *Lung Cancer.* 2019;133:123-129.
- Villena V, Lopez-Encuentra A, Echave-Sustaeta J, Martin-Escribano P, Ortuno-de-Solo B, Estenoz-Alfaro J. Diagnostic value of CA 72-4, carcinoembryonic antigen, CA 15-3, and CA 19-9 assay in pleural fluid. A study of 207 patients. *Cancer.* 1996;78(4):736-740.
- Villena V, Lopez-Encuentra A, Echave-Sustaeta J, Martin-Escribano P, Ortuno-de-Solo B, Estenoz-Alfaro J. Diagnostic value of CA 549 in pleural fluid. Comparison with CEA, CA 15.3 and CA 72.4. *Lung Cancer*. 2003;40(3):289-294.
- Ji M, Zhu X, Dong J, et al. Combination of procalcitonin, C-reaction protein and carcinoembryonic antigens for discriminating between benign and malignant pleural effusions. *Oncology Letters*. 2018;16(2):1727-1735.
- 9. Porcel JM, Civit C, Esquerda A, Salud A, Bielsa S. Utility of CEA and CA 15-3 measurements in nonpurulent pleural exudates in the diagnosis of malignancy: A single-center experience. *Arch Bronconeumol.* 2017;53(8):427-431.
- Shitrit D, Zingerman B, Shitrit AB, Shlomi D, Kramer MR. Diagnostic value of CYFRA 21-1, CEA, CA 19-9, CA 15-3, and CA 125 assays in pleural effusions: analysis of 116 cases and review of the literature. *Oncologist.* 2005;10(7):501-507.

- 11. Trape J, Sant F, Franquesa J, et al. Evaluation of two strategies for the interpretation of tumour markers in pleural effusions. *Respiratory Research*. 2017;18(1):103.
- Wagner IC, Guimaraes MJ, da Silva LK, de Melo FM, Muniz MT. Evaluation of serum and pleural levels of the tumor markers CEA, CYFRA21-1 and CA 15-3 in patients with pleural effusion. *Jornal Brasileiro De Pneumologia: Publicacao Oficial Da Sociedade Brasileira De Pneumologia E Tisilogia.* 2007;33(2):185-191.
- 13. Abrao FC, de Abreu IR, Miyake DH, Busico MA, Younes RN. Role of adenosine deaminase and the influence of age on the diagnosis of pleural tuberculosis. *International Journal of Tuberculosis & Lung Disease*. 2014;18(11):1363-1369.
- 14. Ambade V, Arora MM, Rai SPR, Nikumb SK, Basannar DR. Markers for differentiation of tubercular pleural effusion from non-tubercular effusion. *Medical Journal Armed Forces India.* 2011;67(4):338-342.
- 15. Arnold DT, Bhatnagar R, Fairbanks LD, et al. Pleural fluid adenosine deaminase (pfADA) in the diagnosis of tuberculous effusions in a low incidence population. *PLoS One.* 2015;10(2):e0113047.
- 16. Chung W, Jung Y, Lee K, Park J, Sheen S, Park K. CXCR3 ligands in pleural fluid as markers for the diagnosis of tuberculous pleural effusion. *International Journal of Tuberculosis & Lung Disease*. 2017;21(12):1300-1306.
- 17. Demirer E, Miller AC, Kunter E, Kartaloglu Z, Barnett SD, Elamin EM. Predictive models for tuberculous pleural effusions in a high tuberculosis prevalence region. *Lung.* 2012;190(2):239-248.
- 18. Garcia-Zamalloa A, Taboada-Gomez J. Diagnostic accuracy of adenosine deaminase and lymphocyte proportion in pleural fluid for tuberculous pleurisy in different prevalence scenarios. *PLoS One*. 2012;7(6):e38729.
- 19. He Y, Zhang W, Huang T, Wang X, Wang M. Evaluation of a diagnostic flow chart applying medical thoracoscopy, adenosine deaminase and T-SPOT.TB in diagnosis of tuberculous pleural effusion. *European Review for Medical & Pharmacological Sciences.* 2015;19(19):3563-3568.
- 20. Kalantri Y, Hemvani N, Chitnis DS. Evaluation of real-time polymerase chain reaction, interferon-gamma, adenosine deaminase, and immunoglobulin A for the efficient diagnosis of pleural tuberculosis. *Int J Infect Dis.* 2011;15(4):e226-231.
- 21. Khan FY, Hamza M, Omran AH, et al. Diagnostic value of pleural fluid interferon-gamma and adenosine deaminase in patients with pleural tuberculosis in Qatar. *International journal of general medicine*. 2013;6:13-18.
- 22. Klimiuk J, Krenke R, Safianowska A, Korczynski P, Chazan R. Diagnostic performance of different pleural fluid biomarkers in tuberculous pleurisy. *Adv Exp Med Biol.* 2015;852:21-30.
- 23. Kosar F, Yurt S, Arpinar Yigitbas B, Seker B, Kutbay Ozcelik H, Uzun H. The comparative value of pleural fluid adenosine deaminase and neopterin levels in diagnostic utility of pleural tuberculosis. *Tuberkuloz ve Toraks.* 2015;63(4):243-249.
- 24. Liao M, Yang Q, Zhang J, et al. Gamma interferon immunospot assay of pleural effusion mononuclear cells for diagnosis of tuberculous pleurisy. *Clinical & Vaccine Immunology: CVI.* 2014;21(3):347-353.
- 25. Neves DD, Dias RM, Cunha AJ. Predictive model for the diagnosis of tuberculous pleural effusion. *Brazilian Journal of Infectious Diseases*. 2007;11(1):83-88.
- 26. Ogata Y, Aoe K, Hiraki A, et al. Is adenosine deaminase in pleural fluid a useful marker for differentiating tuberculosis from lung cancer or mesothelioma in Japan, a country with intermediate incidence of tuberculosis? Acta Med Okayama. 2011;65(4):259-263.
- 27. Perez-Rodriguez E, Perez Walton IJ, Sanchez Hernandez JJ, et al. ADA1/ADAp ratio in pleural tuberculosis: an excellent diagnostic parameter in pleural fluid. *Respir Med.* 1999;93(11):816-821.
- 28. Porcel JM, Esquerda A, Bielsa S. Diagnostic performance of adenosine deaminase activity in pleural fluid: a single-center experience with over 2100 consecutive patients. *European Journal of Internal Medicine*. 2010;21(5):419-423.
- 29. Riantawan P, Chaowalit P, Wongsangiem M, Rojanaraweewong P. Diagnostic value of pleural fluid adenosine deaminase in tuberculous pleuritis with reference to HIV coinfection and a Bayesian analysis. *Chest.* 1999;116(1):97-103.
- Sahn SA, Huggins JT, San Jose ME, Alvarez-Dobano JM, ;Valdes L. Can tuberculous pleural effusions be diagnosed by pleural fluid analysis alone? *International Journal of Tuberculosis & Lung Disease*. 2013;17(6):787-793.

- Sivakumar P, Marples L, Breen R, Ahmed L. The diagnostic utility of pleural fluid adenosine deaminase for tuberculosis in a low prevalence area. *International Journal of Tuberculosis & Lung Disease*. 2017;21(6):697-701.
- 32. Skouras VS, Magkouta SF, Psallidas I, et al. Interleukin-27 improves the ability of adenosine deaminase to rule out tuberculous pleural effusion regardless of pleural tuberculosis prevalence. *Infectious Diseases*. 2015;47(7):477-483.
- 33. Tay TR, Tee A. Factors affecting pleural fluid adenosine deaminase level and the implication on the diagnosis of tuberculous pleural effusion: a retrospective cohort study. *BMC Infectious Diseases*. 2013;13:546.
- 34. Tural Onur S, Sokucu SN, Dalar L, Seyhan EC, Akbas A, Altin S. Are soluble IL-2 receptor and IL-12p40 levels useful markers for diagnosis of tuberculous pleurisy? *Infectious Diseases*. 2015;47(3):150-155.
- 35. Valdes L, San Jose E, Alvarez D, Valle JM. Adenosine deaminase (ADA) isoenzyme analysis in pleural effusions: diagnostic role, and relevance to the origin of increased ADA in tuberculous pleurisy. *Eur Respir J.* 1996;9(4):747-751.
- 36. Valdes L, San Jose E, Ferreiro L, et al. Interleukin 27 could be useful in the diagnosis of tuberculous pleural effusions. *Respir Care*. 2014;59(3):399-405.
- 37. Kolditz M, Halank M, Schiemanck CS, Schmeisser A, Hoffken G. High diagnostic accuracy of NT-proBNP for cardiac origin of pleural effusions. *Eur Respir J.* 2006;28(1):144-150.
- 38. Han CH, Choi JE, Chung JH. Clinical utility of pleural fluid NT-pro brain natriuretic peptide (NT-proBNP) in patients with pleural effusions. *Intern Med.* 2008;47(19):1669-1674.
- 39. Bayram M, Ozkan G, Oztekin E, et al. Role of serum and pleural fluid NT-proBNP levels in identifying pleural effusion due to heart failure;Ruolo dei livelli di NT-proBNP nel siero e nel liquido pleurico per identificare i versamenti pleurici indotti da insufficienza cardiaca. *Multidisciplinary Respiratory Medicine*. 2009;4(3):175-181.
- 40. Porcel JM, Martinez-Alonso M, Cao G, Bielsa S, Sopena A, Esquerda A. Biomarkers of heart failure in pleural fluid. *Chest.* 2009;136(3):671-677.
- 41. Valdes L, San Jose E, Pose A, et al. Diagnostic Value of N-Terminal Pro-Brain Natriuretic Peptide in Pleural Effusions of Cardiac Origin; Valor diagnostico de los niveles del N-terminal pro-peptido natriuretico cerebral en los derrames pleurales de origen cardiaco. *Arch Bronconeumol.* 2011;47(5):246-251.
- 42. Khare V, Baethge B, Lang S, Wolf RE, Campbell GD, Jr. Antinuclear antibodies in pleural fluid. *Chest.* 1994;106(3):866-871.
- 43. Porcel JM, Ordi-Ros J, Esquerda A, et al. Antinuclear antibody testing in pleural fluid for the diagnosis of lupus pleuritis. *Lupus*. 2007;16(1):25-27.
- 44. Toworakul C, Kasitanon N, Sukitawut W, Wichinun R, Louthrenoo W. Usefulness of pleural effusion antinuclear antibodies in the diagnosis of lupus pleuritis. *Lupus*. 2011;20(10):1042-1046.
- 45. Wang DY, Yang PC, Yu WL, Kuo SH, Hsu NY. Serial antinuclear antibodies titre in pleural and pericardial fluid. *Eur Respir J.* 2000;15(6):1106-1110.

Question Protocol

Field	Content		
Review Question	What is the diagnostic accuracy of pleural fluid tests (biomarkers) when diagnosing unilateral pleural effusion in adults?		
Type of review question	Diagnostic accuracy		
Objective of the review	The use of a range of pleural fluid biomarkers in specific diagnoses		
Eligibility criteria – population / disease / condition / issue / domain	Adults with unilateral pleural effusion 18+		
Eligibility criteria – index test(s)	Pleural fluid tests (Basic biochemistry (protein / glucose / LDH) Cytology Microbiology Cell count Lipid profile (chylomicrons / cholesterol) NT pro-BNP ADA pH Tumour markers)		
Eligibility criteria – gold standard	Clinico-pathology		
Outcomes and prioritisation	Diagnostic accuracy		
Eligibility criteria – study design	RCTs Prospective comparative studies Case series of >100 patients		
Other inclusion /exclusion criteria	Non-English language excluded unless full English translation Conference abstracts, Cochrane reviews, systematic reviews, reviews Cochrane reviews and systematic reviews can be referenced in the text, but DO NOT use in a meta-analysis		

Proposed sensitivity / subgroup analysis, or meta- regression	Basic biochemistry (protein / glucose / LDH) Cytology Microbiology Cell count Lipid profile (chylomicrons / cholesterol) NT pro-BNP ADA pH Tumour markers
Selection process – duplicate screening / selection / analysis	Agreement should be reached between Guideline members who are working on the question. If no agreement can be reached, a decision should be made by the Guideline co-chairs. If there is still no decision, the matter should be brought to the Guideline group and a decision will be made by consensus
Data management (software)	RevMan5Meta-analysis data input. Evidence review/considered judgement. Storing Guideline text, tables, figures, etc.MetaDTAData meta-analysesGradeproQuality of evidence assessment / Recommendations
Information sources – databases and dates	MEDLINE, Embase, PubMED, Central Register of Controlled Trials and Cochrane Database of Systematic Reviews 1966 - present
Methods for assessing bias at outcome / study level	RevMan5 diagnostic accuracy full review template (based on QUADAS2) (follow instructions in ' <i>BTS Guideline Process Handbook - Diagnostic Accuracy'</i>)
Methods for quantitative analysis – combining studies and exploring (in)consistency	If 3 or more relevant studies: RevMan5 for forest plots, summary ROC plot MetaDTA to combine studies (pooled specificity, sensitivity, likelihood ratios, diagnostic odds ratio and confidence intervals) and calculate RevMan parameters for summary ROC plot (follow instructions in <i>'BTS Guideline Process Handbook - Diagnostic</i> <i>Accuracy'</i>)
Meta-bias assessment – publication bias, selective reporting bias	 GRADEpro Diagnostic accuracy quality of evidence assessment for each index test (follow instructions in '<i>BTS Guideline Process Handbook - Diagnostic Accuracy'</i>)

Rationale / context – what is	Specific tests are known to have diagnostic meaning in pleural disease -
known	pleural pH for infection, cytology positivity varies according to underlying malignancy