Online Appendix A1 BTS Guideline for Pleural Disease

Section A Spontaneous pneumothorax

Question A1 Evidence Review and Protocol

A1 For adults with pneumothorax, is conservative management, needle aspiration, ambulatory management, chemical pleurodesis or thoracic surgery better than intercostal drainage at improving clinical outcomes?

Contents

Questi	ion Evidence Review	3
Back	cground	3
Outco	omes	3
Evide	ence review	3
1.	Conservative Management	3
2.	Needle Aspiration	5
3.	Ambulatory management	6
4.	Chemical pleurodesis	7
5.	Thoracic surgery at initial presentation	9
Evide	ence statements	12
Reco	ommendations	13
Good	d Practice Points	13
Rese	earch Recommendations	14
Meta-a	analyses	15
1.	Conservative Management	15
2.	Needle Aspiration	15
3.	Ambulatory management	16
4.	Chemical pleurodesis	17
5.	Thoracic surgery at initial presentation	19
Risk o	of bias summary	21
GRAD	DE analyses	22
1.	Conservative management	22
2.	Needle Aspiration	22
3.	Ambulatory management	23
4.	Chemical pleurodesis	24
5.	Thoracic surgery at initial presentation	25

Recon	nmendation Tables	27
Ques	stion Details	27
2.	Needle aspiration SUMMARY OF JUDGEMENTS TYPE OF RECOMMENDATION CONCLUSIONS	27 27
3.	Ambulatory management SUMMARY OF JUDGEMENTS TYPE OF RECOMMENDATION CONCLUSIONS	28 29
4.	Chemical pleurodesis SUMMARY OF JUDGEMENTS TYPE OF RECOMMENDATION CONCLUSIONS	30
5.	Thoracic surgery at initial presentation	31 32
Refere	ences	33
Questi	tion Protocol	35

Question Evidence Review

A1 For adults with pneumothorax, is conservative management, needle aspiration, ambulatory management, chemical pleurodesis or thoracic surgery better than intercostal drainage at improving clinical outcomes?

Background

Drainage of symptomatic pneumothorax, either with needle aspiration (NA) or intercostal chest drain (ICD) attached to an underwater seal is the current standard of care for primary spontaneous pneumothorax (PSP). There is ongoing debate over the respective benefits of NA over ICD, with multiple recent randomised trials comparing NA to ICD. Conservative management (i.e. no active intervention) is often undertaken in patients with small or incidental PSP, but could be an alternative to NA or chest drain in patients with larger pneumothoraces. Ambulatory treatment using a purpose made device containing a one-way valve, or Heimlich valve attached to chest drain has the potential to allow outpatient management of pneumothorax. A proportion of spontaneous pneumothoraces (SP) will recur and both chemical pleurodesis via chest tube and thoracic surgery have the potential to reduce this risk. Thoracic surgery is often the treatment of choice for on-going air leak, or for those with recurrent pneumothorax. However due to the risk of recurrence, trials have been performed to establish whether thoracic surgery could be offered as first presentation of pneumothorax. This review will investigate if conservative management, needle aspiration, ambulatory management, chemical pleurodesis or thoracic surgery at first presentation are better than "standard care" (intercostal drainage) at improving clinical outcomes in adults with spontaneous pneumothorax.

Outcomes

Length of hospital stay, recurrence of pneumothorax, re-admission, need for further pleural procedures, complications, pain and breathlessness, quality of life, and mortality. Immediate success rates and radiological resolution were not included as an outcome of interest, as it was not felt to be a patient focused outcome

Evidence review

1. Conservative Management

Four studies were deemed relevant from the literature search. These included one randomised control trial (RCT)¹ and three retrospective cohort studies²⁻⁴. Two studies included participants under the age of 18 (minimum age 14) with PSP^{1,3} and the remaining studies included all adult spontaneous pneumothorax cases (including SSP)^{2,4}.

Length of hospital stay

Three studies reported on the length of hospital stay following intercostal drainage or during conservative management for the treatment of spontaneous pneumothorax in adults. A summary of the results is shown in Table A1a.^{1,3,4}

Table A1a: Comparison of length of hospital stay following intercostal drainage or during conservative management for the treatment of spontaneous pneumothorax in adults

	Median length of hospital stay [IQR] (days)		
Study	Conservative management	Intercostal drainage	
Brown 2020 ¹	0.2 [0.2 to 0.6]	3.0 [0.7 to 6.1]	
Chew 2014 ³	0.6 [0.2 to 0.9]	6.5 [5.3 to 7.7]	
Hart 1983 ⁴	-	5.5 (mean)	

IQR - interquartile range

Recurrence of pneumothorax

All studies reported on the recurrence of pneumothorax and meta-analysis revealed slightly greater risk of recurrence following intercostal drainage (179 per 1000 patients) than compared with conservative management (111 per 1000 (80 to 155)) (Figure A1a).¹⁻⁴

Re-admission

Only one study reported re-admission rate following intercostal drainage or conservative management for the treatment of spontaneous pneumothorax in adults, reporting that 17% of participants (28/162) required re admission following conservative management and 27% (41/154) following intercostal drainage.¹

Need for further pleural procedures

The need for further pleural procedures was reported in all studies.¹⁻⁴ Meta-analysis was not performed as two studies did not report data for the conservative management arm^{2,4} and one for the intercostal arm¹. The remaining data are summarised in Table A1b.

Table A1b: Comparison of further pleural procedures following intercostal drainage or during conservative management for the treatment of spontaneous pneumothorax in adults

	% participants requiring further pleural procedures (no. patients)		
Study Conservative management		Intercostal drain	
Brown 2014 ²	NR	21% (46/220)	
Brown 2020 ¹	15% (25/162)	NR	
Chew 2014 ³	6% (3/53)	0% (0/58)	
Hart 1983 ⁴	NR	11% (13/115)	

NR - not reported

Complications

Complications were reported in all studies and included haemothorax, local infection, pneumonia and empyema.¹⁻⁴ Data were not reported for the conservative management arm in two studies^{2,4} and a summary of the data are shown in <u>Table A1c</u>.

Pain and breathlessness

Only one study reported pain and breathlessness with 2% of participants (4/162) experiencing pain and breathlessness following conservative management and 7% (11/154) following intercostal drainage.¹

Quality of life

No studies directly assessed quality of life, but Brown et al (2020) reported that patients managed conservatively suffered significantly fewer days off work (3 days (1 to 8) compared with 6 days (2 to 14) in the intercostal drainage group, median (IQR)) although patient satisfaction scores were not significantly different $(5.4 \pm 1.0 \text{ and } 5.3 \pm 1.1 \text{ respectively, with 1 being very dissatisfied to 6 being very satisfied).}^1$

Mortality

No studies reported on mortality following pneumothorax treatment with conservative management or intercostal drainage.

Table A1c: Comparison of complications following intercostal drainage or during conservative management for the treatment of spontaneous pneumothorax in adults

		% participants experiencing complications (no. pat	
Study	Complication	Conservative management	Intercostal drain
Brown 2014 ²	All	NR	11% (25/220)
Brown 2020 ¹	All	8% (13/162)	27% (41/154)
Brown 2020 ¹	Haemothorax	2% (3/162)	3% (5/154)
Chew 2014 ³	Haemothorax	0% (0/53)	8% (5/53)
Brown 2020 ¹	Skin infection	1% (1/162)	1% (1/154)
Chew 2014 ³	Skin infection	0% (0/53)	5% (3/53)
Brown 2020 ¹	Empyema	1% (1/162)	2% (3/154)
Chew 2014 ³	Empyema	0% (0/53)	5% (3/53)
Hart 1983 ⁴	Respiratory infection	NR	2% (2/115)
Hart 1983 ⁴	Pleural effusion	NR	2% (2/115)
Hart 1983 ⁴	Lung collapse	NR	10% (12/115)

NR - not reported

2. Needle Aspiration

Nine relevant studies were identified from the literature search, which included seven randomised controlled trials⁵⁻¹¹ and two retrospective cohort studies^{12,13}. Most studies examined patients with PSP, one study examined patients with PSP and SSP¹¹, reporting most outcomes separately, and a final study included PSP and SSP patients, reporting outcomes as a single group¹².

Length of hospital stay

PSP

Seven studies reported length of hospital stay (LOS) for NA and ICD for the treatment of pneumothorax and meta-analysis showed that the anticipated LOS was 2.55 days shorter (2.24 to 2.87) for patients treated with NA (Figure A1b). 5-10,13

SSP

One study reported LOS for NA versus ICD in patients with SSP, which reported a shorter LOS with NA (2.5 days (1.2–7.8) compared with 5.5 days (3.6–9.2) with ICD, median (IQR), p = 0.049). ¹¹

Recurrence of pneumothorax

PSP

Seven studies reported recurrence of pneumothorax and meta-analysis showed no difference in the rate of recurrence following NA or ICD treatment for PSP (Figure A1c).^{5-10,13}

SSP

No studies reported the rate of pneumothorax recurrence in SSP patients.

Re-admission

No studies reported on re-admission following NA or ICD for the treatment of pneumothorax.

Need for further pleural procedures

The need for further pleural procedures was reported in five studies^{6,7,9,12,13} and meta-analysis revealed that the risk of a need for further pleural procedures was greater following NA (626 per 1000 patients (544 to 719) compared with 240 per 1000 following ICD) (Figure A1d).

Complications

Complications following NA or ICD were reported in four studies. Meta-analysis of two studies reporting the number of participants experiencing complications showed no overall difference in the risk of complications following NA or ICD (102 per 1000 patients (46 to 225) compared with 104 per 1000 respectively) (Figure A1e).^{6,13}

When focusing on individual complications (subcutaneous emphysema, bleeding and wound infection), meta-analysis showed a slightly greater risk of subcutaneous emphysema following ICD (<u>Figure A1f</u> and summarised in <u>Table A1d</u>)^{10,11}, but it should be noted that one study included complications from PSP and SSP patients¹¹.

Table A1d: Anticipated risk of complications following needle aspiration or intercostal drainage for the treatment of pneumothorax

	Anticipated risk of complication (per 1000 patier		tion (per 1000 patients)
Complication	No. studies	NA	ICD
Subcutaneous emphysema	2	9 (1 to 70)	<u>92</u>
Bleeding	2	14 (3 to 82)	<u>51</u>
Wound infection	2	9 (1 to 69)	<u>51</u>

ICD - intercostal drainage; NA - needle aspiration

Pain and breathlessness

Harvey et al reported on pain following NA or ICD treatment and using a pain score from 0 (no pain) to 9 (greatest pain), the mean pain score across hospital stay was 2.7 ± 3.3 in the NA group and 6.7 ± 3.6 in the ICD group (p < 0.001). No studies reported on breathlessness.

Quality of life and mortality

No studies reported on quality of life or mortality.

3. Ambulatory management

The initial literature search identified 135 papers of which four randomised controlled trials (RCT) were deemed relevant. ACT design differed between studies, with two using specific ambulatory devices compared with standard care and two using Heimlich devices attached to a chest drain, one comparing with standard care and the other comparing with needle aspiration only (including repeat aspiration). For the purposes of meta-analysis, the comparator groups have been combined as 'standard care'.

Length of hospital stay

Two studies included length of hospital stay (LOS) data and meta-analysis showed a shorter length of stay following ambulatory management (3.47 days less (2.20 to 4.73)) than compared with those undergoing standard care (Figure A1g). 16,17

Recurrence of pneumothorax

In three studies reporting long term recurrence rates, meta-analysis showed no difference in the risk of pneumothorax recurrence following ambulatory management (212 per 1000 patients (144 to 315)) or standard care (244 per 1000) (Figure A1h). 14-16

Re-admission

Two studies reported re-admission rates following ambulatory management or standard care for the treatment of pneumothorax and meta-analysis showed no difference in the risk of re-admission between the two groups (141 per 1000 (83 to 243) following ambulatory management and 176 per 1000 following standard care) (Figure A1i). 15,16

Need for further pleural procedures

The need for further procedures was reported in four studies and meta-analysis revealed no difference in the risk of further pleural procedures following ambulatory management or standard care (294 per 1000 patients (214 to 406) with ambulatory management and 286 per 1000 with standard care) (Figure A1j).¹⁴⁻¹⁷

Complications

Complications were reported in four studies following ambulatory management or standard care for the treatment of pneumothorax and meta-analysis showed no difference in the risk of complications following ambulatory management or standard care (354 per 1000 patients (270 to 459) following ambulatory management and 300 per 1000 with standard care) (Figure A1k). However, it should be noted that there were variations in of the reporting of complications between studies, with one study including readmission to hospital, prevalent in the ambulatory group, as a complication.

Pain and breathlessness

Only one study provided quantitative data on pain and breathlessness using the visual analogue scale (VAS) scoring system and a summary of the results is shown in <u>Table A1e</u>. ¹⁶

Table A1e: Comparison of pain and breathless scores following ambulatory management and standard care for the treatment of pneumothorax

		Approximated V	AS scores (mean)	
Pain / breathlessness	Time	Ambulatory	Standard care	p
Pain	Post-procedure (Day 0)	41	38	NS
Pain	Day 4	11	12	NS
Breathlessness	Post-procedure (Day 0)	34	36	NS
Breathlessness	Day 4	4	7	NS

NS – not significant; VAS – visual analogue scale (from 0 to 100)

Quality of life and mortality

Quality of life was not reported in any studies and no patient deaths were reported.

4. Chemical pleurodesis

The initial literature search identified 138 papers of which six were deemed relevant. These included three randomised controlled trials¹⁸⁻²⁰, one prospective cohort study²¹ and two retrospective cohort studies^{22,23}, which included four different chemical agents, tetracycline^{18,21-23}, talc^{18,20}, minocycline¹⁹, and gentamycin²². Four studies included PSP patients^{18-20,23}, one study SSP patients only²² and the final study included PSP and SSP²¹. All studies administered the chemical agent via chest tube, compared to chest tube only, with the exception of two studies in which instillation was performed at thoracoscopy (one talc poudrage²⁰ and one tetracycline²³).

Length of hospital stay

Three studies reported length of hospital stay following chemical pleurodesis or chest drainage alone for the treatment of pneumothorax. 18-20 One study included two chemical pleurodesis arms (talc and

tetracycline) and both were included in the meta-analysis¹⁸, which showed no difference in the length of hospital stay between the two treatment techniques (<u>0.19 days shorter</u> following chemical pleurodesis (<u>0.18 days lower to 0.55 days higher</u>)) (<u>Figure A1I</u>).

Recurrence of pneumothorax

Six studies reported the rate of pneumothorax recurrence following chemical pleurodesis or chest drainage alone and meta-analysis showed a greater risk of pneumothorax recurrence following chest drainage alone for both PSP^{18-21,23} and SSP^{21,22} (<u>Figure A1m</u>). A summary of the results is shown in <u>Table A1f</u>.

Table A1f: Comparison of the anticipated risk of pneumothorax recurrence following chemical pleurodesis or chest drainage for the treatment of primary or secondary pneumothorax in adults

		Risk of pneumothorax recurrence (per 1000 patients)		
Pneumothorax type	No. datasets	Chemical pleurodesis	Chest drainage alone	
All datasets	7	179 (138 to 227)	<u>320</u>	
PSP ^{18-21,23}	5	189 (145 to 248)	<u>314</u>	
SSP ^{21,22}	2	131 (72 to 238)	<u>345</u>	

Re-admission and need further pleural procedures

No studies reported on the need for re-admission or the need for further pleural procedures.

Complications

Two studies reported complications following chemical pleurodesis or chest drainage alone, but different complications were reported in both. ^{18,20} A summary of the results is shown in Table A1g.

Table A1g: Comparison of the anticipated risk of complications following chemical pleurodesis or chest drainage for the treatment of primary or secondary pneumothorax in adults

		Rate of complication of	ccurrence (no. patients)
Study	Complication	Chemical pleurodesis	Chest drainage alone
Almind 1989* (tetracycline) ¹⁸	Pneumonia	9% (3/33)	9% (3/34)
Almind 1989* (talc) ¹⁸	Pneumonia	10% (3/29)	9% (3/34)
Tschopp 2002 ²⁰	Fever	20% (12/61)	0% (0/47)

^{*} Study included three experimental arms - talc, tetracycline and drainage alone

Pain and breathlessness

Pain was reported in three studies, but different methods of reporting were used across the studies. ¹⁸⁻²⁰ Two studies reported the use of opioids and meta-analysis showed that chemical pleurodesis had a greater risk of requiring opioid treatment (691 per 1000 patients (540 to 890)) compared with drainage alone compared (297 per 1000) (Figure A1n). A summary of the remaining pain data is shown in Table A1h.

Breathlessness was not reported in any study.

Table A1h: Comparison of the anticipated risk of pain following chemical pleurodesis or chest drainage for the treatment of primary or secondary pneumothorax in adults

Study	Chemical pleurodesis	Chest drainage alone	р
	Incidence of pai	n (no. patients)	
Almind 1989* (tetracycline) ¹⁸	52% (17/33)	53% (18/34)	NS
Almind 1989* (talc) ¹⁸	48% (14/29)	53% (18/34)	NS
	VAS pain score (median [range])	
Chen 2013 ¹⁹	8.0 [1.0 to 10.0]	6.0 [0 to 9.5]	<0.0001
	Requirement for non-opiate	e painkillers (no. patients)	
Tschopp 2002 (paracetamol) ²⁰	61% (37/61)	47% (22/47)	NR
Tschopp 2002 (NSAID) ²⁰	38% (23/61)	45% (21/47)	NR

^{*} Study included three experimental arms – talc, tetracycline and drainage alone

NR – not reported; NS – not significant; NSAID – non-steroidal anti-inflammatory drugs; VAS – visual analogue scale

Quality of life

No study reported on quality of life.

Mortality

Two studies reported mortality following chemical pleurodesis or chest drainage alone for the treatment of pneumothorax. Both studies used tetracycline in the experimental arm, with Almind et al including talc as a third arm, but no deaths were reported at time of treatment, or post-procedure follow-up in the talc arm. Meta-analysis was performed on the tetracycline chemical pleurodesis data versus chest drainage alone (Figure A1o) and a summary of the results is shown in Table A1i. While Almind et al focused on PSP patients alone, Alfageme et al included PSP and SSP patients, but a breakdown on mortality rate per pneumothorax type was not provided.

Table A1i: Comparison of the anticipated risk of mortality following chemical pleurodesis or chest drainage for the treatment of primary or secondary pneumothorax in adults

	Anticipated mortality rate (per 1000 patients)	
Subgroup	Tetracycline	Chest drainage alone
Study period	106 (46 to 246)	<u>26</u>
Time of treatment	33 (7 to 147)	<u>20</u>
Post-treatment follow-up	192 (67 to 549)	<u>34</u>

5. Thoracic surgery at initial presentation

From fifteen studies identified in the initial literature search, seven studies were deemed relevant. These included two randomised controls trials (RCTs)^{24,25} and five retrospective cohort studies²⁶⁻³⁰. Four studies focused exclusively on PSP^{24-26,30} while the remainder either included both PSP and SSP^{27,29} or did not specify²⁸.

Surgical approaches varied both between studies, with four studies undertaking a video-assisted thoracoscopic surgical (VATS) approach^{24-26,29} and three performing surgery through an open

thoracotomy^{27,28,30}. Surgical intervention varied within studies per patient but included talc poudrage, resection of blebs/bullae, wedge resection, pleural abrasion and pleurectomy.

Length of hospital stay

Length of hospital stay was reported in four studies^{24,25,27,29}, with three reporting mean and SD data^{24,27,29} and one reporting median and 95% confidence interval (CI) data²⁵. The results of the meta-analysis of the mean and SD data are shown in Figure A1p and summarised in Table A1j.^{24,27,29} Olsen et al reported no difference in length of initial hospital stay following VATS or intercostal drainage (4.1 days (3.4 to 4.8) and 3.8 (3.0 to 4.8) respectively, median (95% CIs), p = 0.42) for the treatment of PSP patients. When time spent in the hospital for readmission for elective surgery according to randomisation was taken into account, the surgical patients had a significantly higher median accumulated hospital stay (7.1 days (95% CI 6.4–7.9, p < 0.001)).²⁵

Table A1j: Comparison of length of hospital stay following thoracic surgery or intercostal drainage for the treatment of pneumothorax in adults

Surgery type	Pneumothorax type	No. studies	LOS for surgery compared with ICD
All datasets	PSP and SSP	3	1.99 days shorter (1.32 to 2.67)
VATS	PSP ^{24,27}	2	2.61 days shorter (1.88 to 3.35)
Thoracotomy*	PSP and SSP ²⁹	1	1.5 days longer (0.24 shorter to 3.24 longer)

^{*} Open thoracotomy

LOS – length of hospital stay; PSP – primary spontaneous pneumothorax; SSP – secondary spontaneous pneumothorax; VATS – video-assisted thoracoscopic surgery

Recurrence of pneumothorax

Pneumothorax recurrence was reported in six studies and a summary of the meta-analysis (<u>Figure A1q</u>) is shown in Table A1k.^{24-27,29,30}

Table A1k: Comparison of rate of pneumothorax recurrences following thoracic surgery or intercostal drainage for the treatment of pneumothorax in adults

		Risk of pneumothorax recurrence	ce (per 1000 patients)
Pneumothorax type	No. datasets	Thoracic surgery	ICD
All datasets	7	54 (36 to 80)	298
PSP ^{24-26,30}	4	60 (35 to 98)	<u>317</u>
SSP ³⁰	1	124 (43 to 378)	<u>478</u>
PSP and SSP ^{27,29}	2	28 (11 to 70)	212

PSP – primary spontaneous pneumothorax; SSP – secondary spontaneous pneumothorax

Re-admission and need for further pleural procedures

No studies reported on re-admission or the need for further pleural procedures.

Complications

Five studies assessed rate of complications, but there was variation in how complications were defined. ^{25,27-30} Three studies reported the number of participants who experienced complications ^{25,27,28} and meta-analysis showed a slight increase in the risk of complications following thoracic surgery (<u>153 per 1000 patients (82 to 286)</u> than ICD (<u>39 per 1000</u>) (<u>Figure A1r</u>). Complications related to the need for further procedures were excluded from the analyses.

All five studies also reported individual complications. ^{25,27-30} and two of these complications (respiratory failure and pneumonia) could be included in a meta-analysis (<u>Figure A1s</u>). A summary of the results is also shown in <u>Table A1I</u>.

Table A1I: Comparison of anticipated risk of respiratory failure and pneumonia complications following thoracic surgery or intercostal drainage for the treatment of pneumothorax in adults

		Risk of complication (pe	er 1000 patients)
Complication	No. datasets	Thoracic surgery	ICD
All datasets	6	<u>14 (5 to 34)</u>	<u>5</u>
Respiratory failure ^{27,28,30}	3	<u>7 (1 to 36)</u>	<u>6</u>
Pneumonia ²⁸⁻³⁰	3	<u>19 (6 to 61)</u>	<u>5</u>

The remaining complications are summarised in Table A1m.

Table A1m: Other complications following thoracic surgery or intercostal drainage for the treatment of pneumothorax in adults

		Complication rate	(no. patients)
Study	Pneumothorax type	Thoracic surgery	ICD
		Persistent a	ir leak
*Tanaka 1993 ³⁰	PSP	3% (3/100)	0% (0/81)
*Tanaka 1993 ³⁰	SSP	29% (7/24)	0% (0/46)
*Hagen 1987 ²⁸	PSP and SSP	17% (10/60)	0% (0/168)
		Haemotho	orax
*Tanaka 1993 ³⁰	PSP	1% [1/100]	0% [0/81]
*Tanaka 1993 ³⁰	SSP	0% [0/24]	0% [0/46]
*Hagen 1987 ²⁸	PSP and SSP	3% [2/60]	0% [0/168]
		Empyen	na
*Hagen 1987 ²⁸	PSP and SSP	2% [1/60]	0% [0/168]
†Schramel 1996 ²⁹	PSP and SSP	1% [3/97]	0% [0/102]
		Other*	#
†Olesen 2018 ²⁵	PSP	3% [3/88]	0% [0/193]
*Tanaka 1993 ³⁰	PSP	0% [0/100]	0% [0/81]
*Tanaka 1993 ³⁰	SSP	4% [1/24]	0% [0/46]
*Granke 1986 ²⁷	PSP and SSP	3% [2/78]	2% [1/49]
*Hagen 1987 ²⁸	PSP and SSP	2% [1/60]	2% [3/168]
†Schramel 1996 ²⁹	PSP and SSP	0% [0/97]	7% [7/102]

^{*} Open thoracotomy

[†] Video-assisted thoracoscopic surgery

[#] Complications only reported in one study, including bronchopleural fistula, cardiac infection, pleural effusion and re-expansion oedema (list not exclusive)

 $[\]mbox{ICD}$ – intercostal drainage; \mbox{PSP} – primary spontaneous pneumothorax; \mbox{SSP} – secondary spontaneous pneumothorax

Pain and breathlessness

Pain and/or breathlessness were not reported in any study.

Quality of life

No study directly reported on quality of life. Cardillo et al compared lung function following VATS or ICD for the treatment of PSP, and there was no significant difference between groups.²⁶

Mortality

Four studies reported mortality rates following thoracic surgery or ICD and a summary of the results is shown in Table A1n.^{24,26-28}

Table A1n: Mortality rates following thoracic surgery or intercostal drainage for the treatment of pneumothorax in adults

			Mortality rate (no	o. patients)
Study	Surgery type	Pneumothorax type	Thoracic surgery	ICD
Al-Mourgi 2015 ²⁴	VATS	PSP	0% (0/19)	0% (0/22)
Cardillo 2007 ²⁶	VATS	PSP	0% (0/50)	0% (0/50)
Granke 1986 ²⁷	Open thoracotomy	PSP and SSP	0% (0/78)	0% (0/49)
Hagen 1987 ²⁸	Open thoracotomy	PSP and SSP	0% (0/60)	2% (0/168)

Evidence statements

Conservative management

Length of hospital stay appears to be shorter following conservative management for the treatment of primary spontaneous pneumothorax in adults when compared with intercostal drainage (**Ungraded**)

Risk of pneumothorax recurrence appears to be greater following intercostal drainage when compared with conservative management for the treatment of primary spontaneous pneumothorax in adults (Very Iow)

There may be more complications experienced following intercostal drainage when compared with conservative management for the treatment of primary spontaneous pneumothorax in adults (**Ungraded**)

Needle aspiration

Length of hospital stay appears to be shorter following needle aspiration for the treatment of primary spontaneous pneumothorax in adults when compared with intercostal drainage (<u>Low</u>)

There appears to be no difference in the rate of pneumothorax recurrence between needle aspiration or intercostal drainage for the treatment of primary spontaneous pneumothorax in adults (<u>Very low</u>)

The need for further pleural procedures following needle aspiration may be increased when compared with intercostal drainage for the treatment of primary spontaneous pneumothorax in adults (<u>Very low</u>)

The risk of overall complications following needle aspiration or intercostal drainage appear to be the same for the treatment of primary spontaneous pneumothorax in adults (<u>Very low</u>), but there may an increased risk of subcutaneous emphysema following intercostal drainage (<u>Low</u>)

Ambulatory management

There appears to be a reduction in the length of hospital stay following ambulatory management when compared with standard care for the treatment of primary spontaneous pneumothorax in adults (Moderate)

There appears to be no difference in the rate of pneumothorax recurrence, the rate of hospital re-admission, the need for pleural procedures or complications following ambulatory management or standard care for the treatment of primary spontaneous pneumothorax in adults (Very low)

Chemical pleurodesis

There appears to be no difference in the length of hospital stay following chemical pleurodesis or intercostal drainage alone for the treatment of primary spontaneous pneumothorax in adults (<u>Low</u>)

The risk of pneumothorax recurrence appears to be lower following chemical pleurodesis when compared with intercostal drainage alone for the treatment of primary or secondary spontaneous pneumothorax in adults (Very low)

There appears to be a greater need for opioid pain relief following chemical pleurodesis when compared with intercostal drainage alone for the treatment of primary spontaneous pneumothorax in adults (<u>Moderate</u>)

Although there appears to be no difference in mortality rate at time of treatment (<u>Very low</u>), tetracycline chemical pleurodesis may cause greater post-treatment mortality when compared with intercostal drainage alone for the treatment of pneumothorax in adults (<u>Very low</u>)

Thoracic surgery

Length of hospital stay appears to be shorter following thoracic surgery, when compared with intercostal drainage, for the treatment of primary spontaneous pneumothorax in adults (<u>Very low</u>)

The rate of pneumothorax recurrence appears to be reduced following thoracic surgery, when compared with intercostal drainage, for the treatment of primary spontaneous pneumothorax in adults (Very low)

Pneumonia and persistent air leak complications appear to be greater following video-assisted thoracic surgery, when compared with intercostal drainage, for the treatment of primary spontaneous pneumothorax in adults (Very low)

There appears to be no difference in the rate of mortality following thoracic surgery or intercostal drainage, for the treatment of primary spontaneous pneumothorax in adults, with the mortality rate being very low for both treatments (Very low)

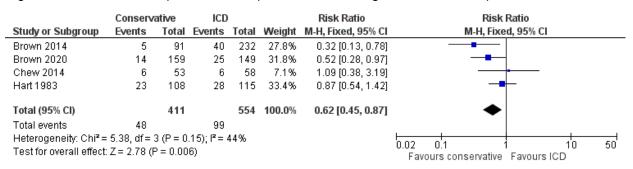
Recommendations

- Conservative management can be considered for the treatment of minimally symptomatic (i.e. no significant pain or breathlessness and no physiological compromise) or asymptomatic primary spontaneous pneumothorax in adults regardless of size (Conditional by consensus)
- Ambulatory management should be considered for the initial treatment of primary spontaneous pneumothorax in adults with good support and in centres with available expertise and follow-up facilities (Conditional)
- In patients not deemed suitable for conservative or ambulatory management, needle aspiration or tube drainage should be considered for the initial treatment of primary spontaneous pneumothorax in adults (Conditional)
- Chemical pleurodesis can be considered for the prevention of recurrence of secondary spontaneous pneumothorax in adults (e.g. patients with severe COPD who significantly decompensated in the presence of a pneumothorax, even during / after the first episode) (<u>Conditional</u>)
- > Thoracic surgery can be considered for the treatment of pneumothorax in adults at initial presentation if recurrence prevention is deemed important (e.g. patients presenting with tension pneumothorax, or those high risk occupations) (Conditional)

Good Practice Points

✓ When establishing local ambulatory treatment pathways, planning and coordination between with the emergency department, general medicine and respiratory medicine is vital.

- ✓ When performing chemical pleurodesis for the treatment of pneumothorax in adults, adequate analgesia should be provided before and after treatment
- ✓ All treatment options should be discussed with the patient to determine their main priority, with consideration for the least invasive option


Research Recommendations

- Further research is needed comparing conservative to ambulatory management for the treatment of primary and (particularly) secondary spontaneous pneumothorax in adults
- Further research is needed into stratifying primary spontaneous pneumothorax adult patients by risk of recurrence to maximise the benefit of early thoracic surgery
- Further research is needed comparing needle aspiration to chest drain for secondary spontaneous pneumothorax in adults

Meta-analyses

1. Conservative Management

Figure A1a: Recurrence of pneumothorax (conservative management versus ICD)

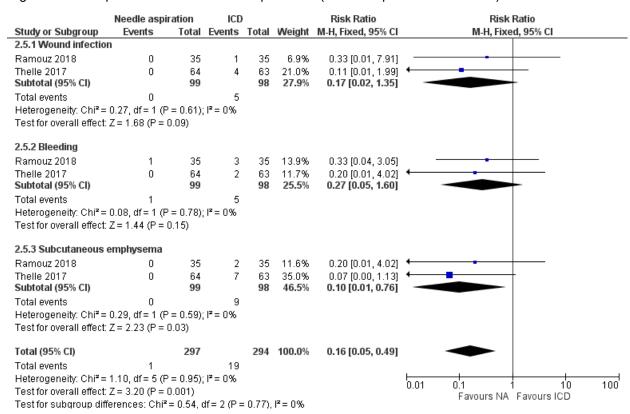
2. Needle Aspiration

Figure A1b: Length of hospital stay (needle aspiration versus ICD for PSP)

	Needl	e aspir	ation	ICD			Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fix	ed, 95% CI	
Andrivet 1995	7	5.6	33	7	4.6	28	1.5%	0.00 [-2.56, 2.56]			
Ayed 2006	1.85	3.9	65	4	2.9	72	7.3%	-2.15 [-3.31, -0.99]			
Harvey 1994	3.2	2.9	35	5.3	3.6	38	4.4%	-2.10 [-3.59, -0.61]		-	
Kim 2019	2.1	1.8	21	5.4	3.6	19	3.1%	-3.30 [-5.09, -1.51]			
Noppen 2002	3.4	1.6	27	4.5	2.7	33	8.1%	-1.10 [-2.20, 0.00]	-	-	
Ong 2004	4	3	28	7.4	4.5	75	4.3%	-3.40 [-4.91, -1.89]			
Ramouz 2018	1.39	0.34	35	4.15	1.07	35	71.2%	-2.76 [-3.13, -2.39]			
Total (95% CI)			244			300	100.0%	-2.55 [-2.87, -2.24]	•		
Heterogeneity: Chi ^z =	14.39, df	= 6 (P =	0.03);	I ² = 58%	5				10 5	 	
Test for overall effect:	Z = 15.95	5 (P < 0.	00001)						-10 -5 Favours N	A Favours ICD	10

Figure A1c: Recurrence of pneumothorax (needle aspiration versus ICD for PSP)

	Needle aspiration		ICD	ICD		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	I M-H, Fixed, 95% CI
Andrivet 1995	4	33	8	28	21.9%	0.42 [0.14, 1.26]	i] —
Ayed 2006	10	59	6	69	14.0%	1.95 [0.75, 5.04]] +-
Harvey 1994	5	35	10	38	24.2%	0.54 [0.21, 1.43]	ı]
Kim 2019	4	21	3	19	8.0%	1.21 [0.31, 4.71]]
Noppen 2002	7	29	9	33	21.3%	0.89 [0.38, 2.08]	ıj
Ong 2004	1	28	0	75	0.7%	7.86 [0.33, 187.53]	ıj
Ramouz 2018	9	32	4	33	10.0%	2.32 [0.79, 6.78]	·] ——
Total (95% CI)		237		295	100.0%	1.07 [0.72, 1.58]	1 📥
Total events	40		40				
Heterogeneity: Chi² = Test for overall effect	, ,		; I²= 39%				0.01 0.1 1 10 100 Favours NA Favours ICD


Figure A1d: Need for further pleural procedures (needle aspiration versus ICD in PSP)

	Needle aspir	ation	n ICD		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Ayed 2006	25	59	23	69	22.9%	1.27 [0.81, 1.99]	-
Chan 2009	103	122	219	890	57.1%	3.43 [2.99, 3.94]	•
Harvey 1994	0	35	7	38	7.8%	0.07 [0.00, 1.22]	
Noppen 2002	11	27	7	33	6.8%	1.92 [0.86, 4.27]	 •
Ong 2004	14	28	9	75	5.3%	4.17 [2.04, 8.53]	
Total (95% CI)		271		1105	100.0%	2.61 [2.27, 3.00]	•
Total events	153		265				
Heterogeneity: Chi²=	33.45, df = 4 (P < 0.00	001); l ^z =	88%			1004 014 100 100
Test for overall effect:	Z=13.59 (P <	0.0000	1)				0.01 0.1 1 10 100 Favours NA Favours ICD

Figure A1e: Complications - all complications (needle aspiration versus ICD for PSP)

	Needle aspiration ICD				Risk Ratio			Risk Ratio			
Study or Subgroup	Events Total Events Total		Weight	Veight M-H, Fixed, 95% Cl M-H			, Fixed, 95% Cl				
Ayed 2006	1	59	5	69	45.9%	0.23 [0.03, 1.95]	_	_			
Ong 2004	6	28	10	75	54.1%	1.61 [0.64, 4.01]			+	-	
Total (95% CI)		87		144	100.0%	0.98 [0.44, 2.16]			*		
Total events	7		15								
Heterogeneity: Chi²=	2.89, df = 1 (P	= 0.09);	I ² = 65%				0.01	0.1	+	10	100
Test for overall effect	Z = 0.06 (P = 0.06)	0.95)					0.01		NA Favou	rs ICD	100

Figure A1f: Complications – individual complications (needle aspiration versus ICD)

3. Ambulatory management

Figure A1g: Length of hospital stay (ambulatory management versus standard care)

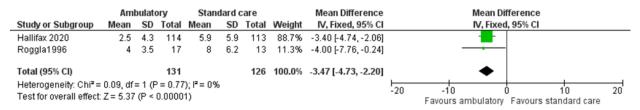


Figure A1h: Recurrence of pneumothorax (ambulatory management versus standard care)

	Ambula	tory	Standard	care		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixe	d, 95% CI	
Choi 2007	3	20	2	26	4.3%	1.95 [0.36, 10.58]			•	
Hallifax 2020	28	117	36	119	88.0%	0.79 [0.52, 1.21]			 -	
Ho 2011	4	25	3	23	7.7%	1.23 [0.31, 4.90]			-	
Total (95% CI)		162		168	100.0%	0.87 [0.59, 1.29]		•	-	
Total events	35		41							
Heterogeneity: Chi²=	1.31, df=	2 (P = 1)	0.52); $I^2 = 0$	%			0.05	n 2 ·	<u> </u>	20
Test for overall effect:	Z = 0.67 (P = 0.5	0)				0.03	0.2	Favours standard care	20

Figure A1i: Re-admission (ambulatory management versus standard care)

	Ambula	tory	Standard	care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Hallifax 2020	17	117	23	119	91.6%	0.75 [0.42, 1.33]	-
Ho 2011	3	25	2	23	8.4%	1.38 [0.25, 7.53]	
Total (95% CI)		142		142	100.0%	0.80 [0.47, 1.38]	•
Total events	20		25				
Heterogeneity: Chi²=	0.44, df =	1 (P = 0)	$0.51); I^2 = 0$	0%			0.01 0.1 1 10 100
Test for overall effect:	Z = 0.79 (P = 0.43	3)				Favours ambulatory Favours standard care

Figure A1j: Need for further pleural procedures (ambulatory management versus standard care)

	Ambula	tory Standard care			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	tal Events Total		Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Choi 2007	27	47	5	47	8.8%	5.40 [2.28, 12.82]	
Hallifax 2020	24	114	42	113	74.5%	0.57 [0.37, 0.87]	
Ho 2011	5	25	8	23	14.7%	0.57 [0.22, 1.51]	
Roggla1996	3	17	1	13	2.0%	2.29 [0.27, 19.59]	
Total (95% CI)		203		196	100.0%	1.03 [0.75, 1.42]	*
Total events	59		56				
Heterogeneity: Chi²=	23.52, df	= 3 (P <	0.0001); P	²= 87%			0.01 0.1 1 10 100
Test for overall effect:	Z = 0.17 (P = 0.8	6)				Favours ambulatory Favours standard care

Figure A1k: Complications (ambulatory management versus standard care)

	Ambula	tory	Standard	care	are Risk Ratio		Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixe	ed, 95% CI	
Choi 2007	0	47	9	47	15.6%	0.05 [0.00, 0.88]	+	-		
Hallifax 2020	64	117	46	119	75.0%	1.42 [1.07, 1.87]			-	
Ho 2011	1	25	2	23	3.4%	0.46 [0.04, 4.74]		-		
Roggla1996	7	17	3	11	6.0%	1.51 [0.49, 4.63]			-	
Total (95% CI)		206		200	100.0%	1.18 [0.90, 1.53]			•	
Total events	72		60							
Heterogeneity: Chi ^z =	7.18, df=	3(P = 0)	0.07); $I^2 = 5$	8%			0.04	n 1	 	400
Test for overall effect:	Z = 1.20 (P = 0.2	3)				0.01	0.1	1 10 Favours standard ca	100 re

4. Chemical pleurodesis

Figure A1I: Length of hospital stay (chemical pleurodesis versus standard care)

	Chemica	l pleurod	lesis	Drain	age ald	one		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Almind 1989 (talc)	6	4.64	33	6.8	5.56	34	2.2%	-0.80 [-3.25, 1.65]	
Almind 1989 (tetracycline)	6.6	4.22	29	6.8	5.56	34	2.2%	-0.20 [-2.62, 2.22]	
Chen 2013	1.7	1.43	106	1.51	1.42	108	89.3%	0.19 [-0.19, 0.57]	
Tschopp 2002	8	3.6	61	7.4	3.9	47	6.3%	0.60 [-0.84, 2.04]	
Total (95% CI)			229			223	100.0%	0.19 [-0.18, 0.55]	•
Heterogeneity: $Chi^2 = 1.04$, or Test for overall effect: $Z = 1.0$			0%						-10 -5 0 5 10 Favours pleurodesis Favours drainage alone

Figure A1m: Recurrence of pneumothorax (chemical pleurodesis versus standard care)

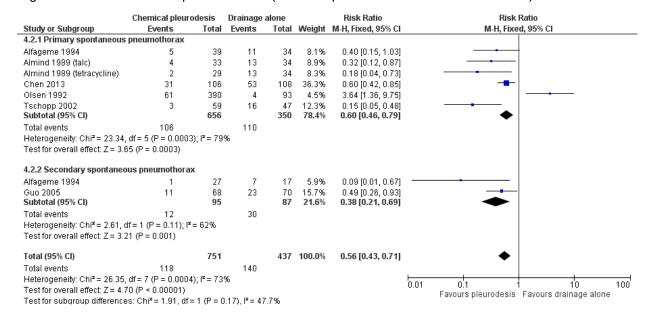
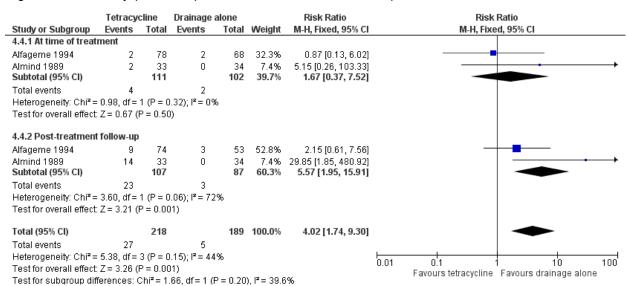



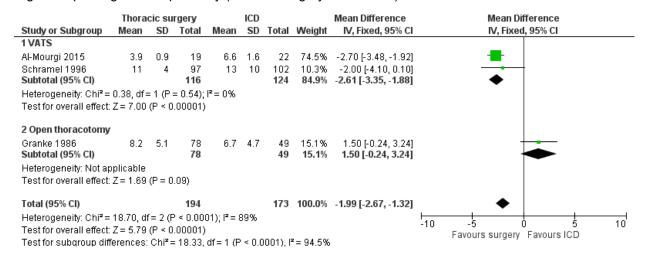
Figure A1n: Pain and breathlessness (chemical pleurodesis versus standard care)

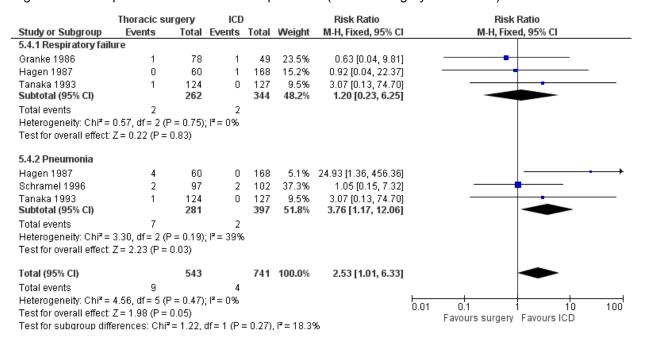
	Chemical pleur	odesis	Drainage	alone		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Chen 2013	48	61	25	47	57.6%	1.48 [1.10, 1.99]	
Tschopp 2002	72	106	21	108	42.4%	3.49 [2.33, 5.24]	-
Total (95% CI)		167		155	100.0%	2.33 [1.82, 3.00]	•
Total events	120		46				
Heterogeneity: Chi²=	= 12.77, df = 1 (P =	0.0004);	l²= 92%				0.02 0.1 10 50
Test for overall effect	Z = 6.62 (P < 0.0)	0001)					Favours pleurodesis Favours drainage alone

Figure A1o: Mortality (chemical pleurodesis versus standard care)

5. Thoracic surgery at initial presentation

Figure A1p: Length of hospital stay (thoracic surgery versus ICD)




Figure A1q: Recurrence of pneumothorax (thoracic surgery versus ICD)

	Thoracic su	гдегу	ICD			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
5.2.1 Primary spontar	neous pneum	othorax					
Al-Mourgi 2015	0	19	9	22	6.8%	0.06 [0.00, 0.98]	-
Cardillo 2007	0	50	6	50	5.0%	0.08 [0.00, 1.33]	
Olsen 1992	11	88	32	93	23.9%	0.36 [0.20, 0.68]	
Tanaka 1993 (PSP) Subtotal (95% CI)	3	100 257	31	81 246	26.3% 61.9 %	0.08 [0.02, 0.25] 0.19 [0.11, 0.31]	•
Total events	14		78				
Heterogeneity: Chi² = 1	7.64, df = 3 (P	= 0.05);	I ² = 61%				
Test for overall effect: 2	Z = 6.42 (P < 0)	1.00001))				
5.2.2 Secondary spon	taneous pnei	ımothoı	rax				
Tanaka 1993 (SSP) Subtotal (95% CI)	3	24 24	22	46 46	11.6% 11.6 %	0.26 [0.09, 0.79] 0.26 [0.09, 0.79]	•
Total events	3		22				
Heterogeneity: Not app	olicable						
Test for overall effect: 2	Z = 2.39 (P = 0)	1.02)					
5.2.3 PSP and SSP							
Granke 1986	0	78	11	49	10.8%	0.03 [0.00, 0.46]	
Schramel 1996	4	97	21	102	15.7%	0.20 [0.07, 0.56]	
Subtotal (95% CI)		175		151	26.5%	0.13 [0.05, 0.33]	•
Total events	4		32				
Heterogeneity: Chi² = 1	1.85, df = 1 (P	= 0.17);	$I^2 = 46\%$				
Test for overall effect: 2	Z= 4.33 (P < 0	1.0001)					
Total (95% CI)		456		443	100.0%	0.18 [0.12, 0.27]	•
Total events	21		132				
Heterogeneity: Chi² = 1	10.08, df = 6 (i	o = 0.12); $I^2 = 409$	%			0.005 0.1 1 10 200
Test for overall effect: 2	Z = 8.12 (P < 0)	1.00001))				Favours surgery Favours ICD
Test for subgroup diffe	erences: Chi ^z :	= 0.93, d	df = 2 (P =	0.63),	$I^2 = 0\%$. a.ouis surgery Tavours 100

Figure A1r: Complications – all complications (thoracic surgery versus ICD)

	Thoracic su	gery	ICD			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Granke 1986	3	78	2	49	29.9%	0.94 [0.16, 5.44]	
Hagen 1987	18	60	10	168	64.1%	5.04 [2.47, 10.30]	_
Olsen 1992	3	88	0	93	5.9%	7.39 [0.39, 141.11]	-
Total (95% CI)		226		310	100.0%	3.95 [2.12, 7.38]	•
Total events	24		12				
Heterogeneity: Chi²=	3.19, df = 2 (P	= 0.20)	$ I^2 = 37\%$				0.01 0.1 1 10 100
Test for overall effect	Z= 4.31 (P < 0	0.0001)					Favours surgery Favours ICD

Figure A1s: Complications – individual complications (thoracic surgery versus ICD)

Risk of bias summary

	Selection bias	Performance bias	Detection bias	Attrition bias	Publication bias
Alfageme 1994		?	•	?	•
Almind 1989	?	?	•	?	•
Al-Mourgi 2015	?	•	?	•	•
Andrivet 1995	?	?	?	?	•
Ayed 2006	•	•	?	•	•
Brown 2014	•	?	?	?	•
Brown 2020	•	•	•	•	•
Cardillo 2007	?		?	?	•
Chan 2009	•	?	?	?	•
Chen 2013	•	•	?	•	•
Chew 2014		?	?	?	•
Choi 2007		?	•	•	•
Granke 1986	•	?	•	?	•
Guo 2005	•	?	?	?	•
Hagen 1987	•	?	•	?	•
Hallifax 2020	•	•	?	•	•
Hart 1983		?	•	?	•
Harvey 1994	?	?	?	•	•
Ho 2011	?	•	?	•	•
Kim 2019	?	?	?	•	•
Noppen 2002	?	?	?	•	•
Olsen 1992	•		?	?	•
Ong 2004	•	•	?	?	•
Ramouz 2018	?	•	?	•	•
Roggla1996	•		•	•	•
Schramel 1996	•		•	?	•
Tanaka 1993	•	•	•	?	•
Thelle 2017	•	•	?	•	•
Tschopp 2002	?	?	?	•	•

GRADE analyses

1. Conservative management

For adults with pneumothorax, is conservative management, needle aspiration, ambulatory management, chemical pleurodesis or thoracic surgery better than intercostal drainage at improving clinical outcomes?

Population: Adults (18+) with pneumothorax **Intervention**: Conservative management **Comparator**: Intercostal drainage

Outcome	Number of	Relative effect	Anticipat	Quality of the		
	participants (studies)	(95% CI)	ICD	Conservative mgmt.	Evidence (GRADE)	
Pneumothorax recurrence	965 (4 studies)	RR 0.62 (0.45 to 0.87)	179 per 1000	111 per 1000 (80 to 155)	⊕⊖⊖⊖ VERY LOW ^{a,b}	
Cl. Confidence interv	al					

CI: Confidence interval

Explanations

- a. High risk of bias across the studies
- b. Some imprecision, CIs cross one MID

2. Needle Aspiration

For adults with pneumothorax, is conservative management, needle aspiration, ambulatory management, chemical pleurodesis or thoracic surgery better than intercostal drainage at improving clinical outcomes?

Population: Adults (18+) with pneumothorax

Intervention: Needle aspiration **Comparator**: Intercostal drainage

Outcome	Number of participants (studies)	Estimate of effect	Quality of the Evidence (GRADE)
Length of hospital stay	544 (7 studies)	2.55 days lower (2.24 to 2.87 lower) in the intervention group	⊕⊕⊖⊖ LOW ª

Explanations

a. High risk of bias across the studies

Population: Adults (18+) with pneumothorax

Intervention: Needle aspiration **Comparator**: Intercostal drainage

Outcome	Number of	Relative effect	Anticipat	ed absolute effects	Quality of the
	participants (studies)	(95% CI)	ICD	Needle aspiration	Evidence (GRADE)
Pneumothorax recurrence	532 (7 studies)	RR 1.07 (0.72 to 1.58)	136 per 1000	145 per 1000 (98 to 214)	⊕○○○ VERY LOW ^{a,b}
Need for further procedures	1376 (5 studies)	RR 2.61 (2.27 to 3.00)	240 per 1000	626 per 1000 (544 to 719)	⊕○○○ VERY LOW b,c,d
Complications	231 (2 studies)	RR 0.98 (0.44 to 2.16)	104 per 1000	102 per 1000 (46 to 225)	⊕⊖⊖⊖ VERY LOW b,e,f
Complications – combined	591 (2 studies)	RR 0.16 (0.05 to 0.49)	65 per 1000	10 per 1000 (3 to 32)	⊕⊕○○ LOW °
Complications – Wound infection	197 (2 studies)	RR 0.17 (0.02 to 1.35)	51 per 1000	9 per 1000 (1 to 69)	⊕○○○ VERY LOW ^{c,g}
Complications – Bleeding	197 (2 studies)	RR 0.27 (0.05 to 1.6)	51 per 1000	14 per 1000 (3 to 82)	⊕○○○ VERY LOW ^{c,g}
Complications – Emphysema	197 (2 studies)	RR 0.10 (0.01 to 0.76)	92 per 1000	9 per 1000 (1 to 70)	⊕⊕ ○○ LOW °
CI: Confidence interval					

Explanations

- a. Some inconsistency across the studies
- b. Serious imprecision, CIs cross both MIDs
- c. High risk of bias across the studies
- d. Inconsistency in one study
- e. Some risk of bias across the studies
- f. Some inconsistency across the studies
- . Some imprecision, CIs cross one MID

3. Ambulatory management

For adults with pneumothorax, is conservative management, needle aspiration, ambulatory management, chemical pleurodesis or thoracic surgery better than intercostal drainage at improving clinical outcomes?

Population: Adults (18+) with pneumothorax **Intervention**: Ambulatory management **Comparator**: Intercostal drainage

Outcome	Number of participants (studies)	Estimate of effect	Quality of the Evidence (GRADE)
Length of hospital stay	257 (2 studies)	3.47 days lower (2.2 to 4.73 lower) in the intervention group	⊕⊕⊕⊖ MODERATE ^a

Explanations

a. Some risk of bias across the studies

Population: Adults (18+) with pneumothorax **Intervention**: Ambulatory management **Comparator**: Intercostal drainage

Outcome	Number of	Relative effect	Anticipated at	osolute effects	Quality of the	
	participants (studies)	(95% CI)	ICD	Ambulatory	Evidence (GRADE)	
Pneumothorax recurrence	330 (3 studies)	RR 0.87 (0.59 to 1.29)	244 per 1000	212 per 1000 (144 to 315)	⊕⊖⊖⊖ VERY LOW ^{a,b,c}	
Re-admission	284 (2 studies)	RR 0.80 (0.47 to 1.38)	176 per 1000	141 per 1000 (83 to 243)	⊕⊖⊖⊖ VERY LOW b,c,d	
Need for further procedures	399 (4 studies)	RR 1.03 (0.75 to 1.42)	286 per 1000	294 per 1000 (214 to 406)	⊕○○○ VERY LOW b,c,d	
Complications	406 (4 studies)	RR 1.18 (0.90 to 1.53)	300 per 1000	354 per 1000 (270 to 459)	⊕⊖⊖⊖ VERY LOW b,e,f	
CI: Confidence interval						

Explanations

- a. High risk of bias in two studies
- b. Some inconsistency across the studies
- c. Serious imprecision, CIs cross both MIDs
- d. Some risk of bias across the studies
- e. High risk of bias across the studies
- f. Some imprecision, CIs cross one MID

4. Chemical pleurodesis

For adults with pneumothorax, is conservative management, needle aspiration, ambulatory management, chemical pleurodesis or thoracic surgery better than intercostal drainage at improving clinical outcomes?

Population: Adults (18+) with pneumothorax

Intervention: Chemical pleurodesis **Comparator**: Intercostal drainage

Outcome	Number of participants (studies)	Estimate of effect	Quality of the Evidence (GRADE)
Length of hospital stay	452 (4 studies)	0.19 days higher (0.18 lower to 0.55 higher in the intervention group	⊕⊕⊜⊝ LOW a,b

Explanations

- a. High risk of bias across the studies
- b. Some inconsistency across the studies

Population: Adults (18+) with pneumothorax

Intervention: Chemical pleurodesis **Comparator**: Intercostal drainage

Outcome	Number of	Relative effect	Anticipated at	osolute effects	Quality of the
	participants (studies)	(95% CI)	ICD	Pleurodesis	Evidence (GRADE)
Pneumothorax recurrence	1188 (7 studies)	RR 0.56 (0.43 to 0.71)	320 per 1000	179 per 1000 (138 to 227)	⊕○○○ VERY LOW ^{a,b}
Pneumothorax recurrence – PSP	1006 (6 studies)	RR 0.60 (0.46 to 0.79)	314 per 1000	189 per 1000 (145 to 248)	⊕⊖⊖⊖ VERY LOW a,b
Pneumothorax recurrence – SSP	182 (2 studies)	RR 0.38 (0.21 to 0.69)	345 per 1000	131 per 1000 (72 to 238)	⊕⊖⊖⊖ VERY LOW a,b
Pain – opioid use	322 (2 studies)	RR 2.33 (1.82 to 3.00)	297 per 1000	691 per 1000 (540 to 890)	⊕⊕⊕⊜ MODERATE °
Mortality – at time of treatment	213 (2 studies)	RR 1.67 (0.37 to 7.52)	20 per 1000	33 per 1000 (7 to 147)	⊕⊖⊖⊖ VERY LOW ^{a,b,d}
Mortality – post- treatment follow-up	194 (2 studies)	RR 5.57 (1.95 to 15.91)	34 per 1000	192 per 1000 (67 to 549)	VERY LOW a,b
CI: Confidence interval					

Explanations

- a. High risk of bias across the studies
- b. Some inconsistency across the studies
- c. Some risk of bias across the studies
- d. Serious imprecision, CIs cross both MIDs

5. Thoracic surgery at initial presentation

For adults with pneumothorax, is conservative management, needle aspiration, ambulatory management, chemical pleurodesis or thoracic surgery better than intercostal drainage at improving clinical outcomes?

Population: Adults (18+) with pneumothorax

Intervention: Thoracic surgery
Comparator: Intercostal drainage

Outcome	Number of participants (studies)	Estimate of effect	Quality of the Evidence (GRADE)
Length of hospital stay	367 (3 studies)	1.99 days lower (1.32 to 2.67 lower) in the intervention group	⊕⊖⊖⊖ VERY LOW a,b,c
Length of hospital stay – VATS	240 (2 studies)	2.61 days lower (1.88 to 3.34 lower) in the intervention group	⊕⊖⊖ VERY LOW a,c

Explanations

- a. High risk of bias across the studies
- b. Some inconsistency across the studies
- c. Some imprecision, CIs cross one MID

Population: Adults (18+) with pneumothorax

Intervention: Thoracic surgeryComparator: Intercostal drainage

Outcome	Number of	Relative effect	Anticipate	ed absolute effects	Quality of the
	participants (studies)	(95% CI)	ICD	Thoracic surgery	Evidence (GRADE)
Pneumothorax recurrence	899 (7 studies)	RR 0.18 (0.12 to 0.27)	298 per 1000	54 per 1000 (36 to 80)	⊕○○○ VERY LOW ^{a,b}
Pneumothorax recurrence – PSP	503 (4 studies)	RR 0.19 (0.11 to 0.31)	317 per 1000	60 per 1000 (35 to 98)	⊕○○○ VERY LOW b,c,d
Pneumothorax recurrence – PSP, SSP	326 (2 studies)	RR 0.13 (0.05 to 0.33)	212 per 1000	28 per 1000 (11 to 70)	⊕⊖⊖⊖ VERY LOW b,e,f
Complications - all	536 (3 studies)	RR 3.95 (2.12 to 7.38)	39 per 1000	153 per 1000 (82 to 286)	⊕⊕⊖⊖ LOW°
Complications – individual	1284 (4 studies)	RR 2.53 (1.01 to 6.33)	5 per 1000	14 per 1000 (5 to 34)	⊕○○○ VERY LOW ^{c,g}
Complications – Respiratory failure	606 (3 studies)	RR 1.20 (0.23 to 6.25)	6 per 1000	7 per 1000 (1 to 36)	⊕○○○ VERY LOW ^{c,g}
Complications – Pneumonia	678 (3 studies)	RR 3.76 (1.17 to 12.06)	5 per 1000	19 per 1000 (6 to 61)	⊕⊕⊖⊖ LOW°
CI: Confidence interval					

Explanations

- a. Some inconsistency across the studies
- b. Serious imprecision, CIs cross both MIDs
- c. High risk of bias across the studies
- d. Inconsistency in one study
- e. Some risk of bias across the studies
- f. Some inconsistency across the studies
- g. Some imprecision, CIs cross one MID

Recommendation Tables

Question Details

POPULATION:	Adults (18+) with pneumothorax
INTERVENTION:	Conservative management, needle aspiration, ambulatory management, chemical pleurodesis or thoracic surgery
COMPARISON:	Intercostal drainage (ICD)
OUTCOMES:	Length of hospital stay; recurrence of pneumothorax; re-admission; need for further pleural procedures; complications; pain and breathlessness; quality of life; mortality

2. Needle aspiration

SUMMARY OF JUDGEMENTS

	JUDGEMENT						
PROBLEM	No	Probably no	Probably yes	Yes		Varies	Don't know
DESIRABLE EFFECTS	Trivial	Small	Moderate	Large		Varies	Don't know
UNDESIRABLE EFFECTS	Large	Moderate	Small	Trivial		Varies	Don't know
CERTAINTY OF EVIDENCE	Very low	Low	Moderate	High			No included studies
BALANCE OF EFFECTS	Favours the comparison	Probably favours the comparison	Does not favour the intervention or the comparison	Probably favours the intervention	Favours the intervention	Varies	Don't know

TYPE OF RECOMMENDATION

Strong recommendation against the intervention	Conditional recommendation against the intervention	Conditional recommendation for either the intervention or the comparison	Conditional recommendation for the intervention	Strong recommendation for the intervention
			\boxtimes	

CONCLUSIONS

Recommendation

In patients not deemed suitable for conservative or ambulatory management, needle aspiration should be considered for the initial treatment of primary spontaneous pneumothorax in adults

Justification

Length of hospital stay appears to be shorter following needle aspiration for the treatment of primary spontaneous pneumothorax in adults when compared with intercostal drainage (<u>Low</u>)

There appears to be no difference in the rate of pneumothorax recurrence between needle aspiration or intercostal drainage for the treatment of primary spontaneous pneumothorax in adults (<u>Very low</u>)

The need for further pleural procedures following needle aspiration may be reduced when compared with intercostal drainage for the treatment of primary spontaneous pneumothorax in adults (<u>Very low</u>)

The risk of overall complications following needle aspiration or intercostal drainage appear to be the same for the treatment of primary spontaneous pneumothorax in adults (<u>Very low</u>), but there may an increased risk of subcutaneous emphysema following intercostal drainage (<u>Low</u>)

Subgroup considerations

There was not enough evidence to make a recommendation on the use of needle aspiration for secondary spontaneous pneumothorax (SSP)

Research priorities

Further research is needed comparing needle aspiration to chest drain for secondary spontaneous pneumothorax in adults

3. Ambulatory management

SUMMARY OF JUDGEMENTS

	JUDGEMENT						
PROBLEM	No	Probably no	Probably yes	Yes		Varies	Don't know
DESIRABLE EFFECTS	Trivial	Small	Moderate	Large		Varies	Don't know
UNDESIRABLE EFFECTS	Large	Moderate	Small	Trivial		Varies	Don't know
CERTAINTY OF EVIDENCE	Very low	Low	Moderate	High			No included studies
BALANCE OF EFFECTS	Favours the comparison	Probably favours the comparison	Does not favour the intervention or the comparison	Probably favours the intervention	Favours the intervention	Varies	Don't know

TYPE OF RECOMMENDATION

Strong recommendation against the intervention	Conditional recommendation against the intervention	Conditional recommendation for either the intervention or the comparison	Conditional recommendation for the intervention	Strong recommendation for the intervention
			\boxtimes	

CONCLUSIONS

Recommendation

Ambulatory management should be considered for the initial treatment of primary spontaneous pneumothorax in adults with good support and in centres with available expertise and follow-up facilities

Justification

There appears to be a reduction in the length of hospital stay following ambulatory management when compared with standard care for the treatment of primary spontaneous pneumothorax in adults (Moderate)

There appears to be no difference in the rate of pneumothorax recurrence, the rate of hospital re-admission, the need for pleural procedures or complications following ambulatory management or standard care for the treatment of primary spontaneous pneumothorax in adults (**Very low**)

Subgroup considerations

Ambulatory management should not be considered for secondary spontaneous pneumothorax (SSP)

Research priorities

Further research is needed comparing conservative to ambulatory management for the treatment of primary and (particularly) secondary spontaneous pneumothorax in adults

4. Chemical pleurodesis

SUMMARY OF JUDGEMENTS

	JUDGEMENT						
PROBLEM	No	Probably no	Probably yes	Yes		Varies	Don't know
DESIRABLE EFFECTS	Trivial	Small	Moderate	Large		Varies	Don't know
UNDESIRABLE EFFECTS	Large	Moderate	Small	Trivial		Varies	Don't know
CERTAINTY OF EVIDENCE	Very low	Low	Moderate	High			No included studies
BALANCE OF EFFECTS	Favours the comparison	Probably favours the comparison	Does not favour the intervention or the comparison	Probably favours the intervention	Favours the intervention	Varies	Don't know

TYPE OF RECOMMENDATION

Strong recommendation against the intervention	Conditional recommendation against the intervention	Conditional recommendation for either the intervention or the comparison	Conditional recommendation for the intervention	Strong recommendation for the intervention
			\boxtimes	

CONCLUSIONS

Recommendation

Chemical pleurodesis can be considered for the prevention of recurrence of secondary spontaneous pneumothorax in adults

Justification

There appears to be no difference in the length of hospital stay following chemical pleurodesis or intercostal drainage for the treatment of primary spontaneous pneumothorax in adults (<u>Low</u>)

The risk of pneumothorax recurrence appears to be lower following chemical pleurodesis when compared with intercostal drainage for the treatment of primary or secondary spontaneous pneumothorax in adults (Very low)

There appears to be a greater need for opioid pain relief following chemical pleurodesis when compared with intercostal drainage alone for the treatment of primary spontaneous pneumothorax in adults (Moderate)

Although there appears to be no difference in mortality rate at time of treatment (<u>Very low</u>), tetracycline chemical pleurodesis may cause greater post-treatment mortality when compared with intercostal drainage for the treatment of pneumothorax in adults (<u>Very low</u>)

Subgroup considerations

Chemical pleurodesis can be considered for secondary spontaneous pneumothorax (SSP)

Research priorities

None

5. Thoracic surgery at initial presentation

SUMMARY OF JUDGEMENTS

	JUDGEMENT						
PROBLEM	No	Probably no	Probably yes	Yes		Varies	Don't know
DESIRABLE EFFECTS	Trivial	Small	Moderate	Large		Varies	Don't know
UNDESIRABLE EFFECTS	Large	Moderate	Small	Trivial		Varies	Don't know
CERTAINTY OF EVIDENCE	Very low	Low	Moderate	High			No included studies
BALANCE OF EFFECTS	Favours the comparison	Probably favours the comparison	Does not favour the intervention or the comparison	Probably favours the intervention	Favours the intervention	Varies	Don't know

TYPE OF RECOMMENDATION

Strong recommendation against the intervention	Conditional recommendation against the intervention	Conditional recommendation for either the intervention or the comparison	Conditional recommendation for the intervention	Strong recommendation for the intervention
			\boxtimes	

CONCLUSIONS

Recommendation

Thoracic surgery can be considered for the treatment of pneumothorax in adults at initial presentation if recurrence prevention is deemed important

Justification

Length of hospital stay appears to be shorter following thoracic surgery, when compared with intercostal drainage, for the treatment of primary spontaneous pneumothorax in adults (Very low)

The rate of pneumothorax recurrence appears to be reduced following thoracic surgery, when compared with intercostal drainage, for the treatment of primary spontaneous pneumothorax in adults (**Very low**)

Pneumonia and persistent air leak complications appear to be greater following video-assisted thoracic surgery, when compared with intercostal drainage, for the treatment of primary spontaneous pneumothorax in adults (<u>Very low</u>)

There appears to be no difference in the rate of mortality following thoracic surgery or intercostal drainage, for the treatment of primary spontaneous pneumothorax in adults, with the mortality rate being very low for both treatments (<u>Very low</u>)

Subgroup considerations

There was not enough evidence to make a recommendation on the use of thoracic surgery for secondary spontaneous pneumothorax (SSP)

Research priorities

Further research is needed into stratifying primary spontaneous pneumothorax adult patients by risk of recurrence to maximise the benefit of early thoracic surgery

References

- 1. Brown SGA, Ball EL, Perrin K, et al. Conservative versus interventional treatment for spontaneous pneumothorax. *N Engl J Med*. 2020;382(5):405-415.
- Brown SGA, Ball EL, Macdonald SP, Wright C, McD Taylor D. Spontaneous pneumothorax; a multicentre retrospective analysis of emergency treatment, complications and outcomes. *Internal Medicine Journal*. 2014;44(5):450-457.
- 3. Chew R, Gerhardy B, Simpson G. Conservative versus invasive treatment of primary spontaneous pneumothorax: A retrospective cohort study. *Acute Medicine and Surgery*. 2014;1(4):195-199.
- 4. Hart GJ, Stokes TC, Couch AH. Spontaneous pneumothorax in Norfolk. *British Journal of Diseases of the Chest.* 1983;77(2):164-170.
- 5. Andrivet P, Djedaini K, Teboul JL, Brochard L, Dreyfuss D. Spontaneous pneumothorax. Comparison of thoracic drainage vs immediate or delayed needle aspiration. *Chest.* 1995;108(2):335-339.
- 6. Ayed AK, Chandrasekaran C, Sukumar M. Aspiration versus tube drainage in primary spontaneous pneumothorax: a randomised study. *Eur Respir J.* 2006;27(3):477-482.
- 7. Harvey J, Prescott RJ. Simple aspiration versus intercostal tube drainage for spontaneous pneumothorax in patients with normal lungs. British Thoracic Society Research Committee. *BMJ (Clinical research ed)*. 1994;309(6965):1338-1339.
- 8. Kim IH, Kang DK, Min HK, Hwang YH. A prospective randomized trial comparing manual needle aspiration to closed thoracostomy as an initial treatment for the first episode of primary spontaneous pneumothorax. *The Korean Journal of Thoracic & Cardiovascular Surgery.* 2019;52(2):85-90.
- 9. Noppen M. Do blebs cause primary spontaneous pneumothorax? Con: Blebs do not cause primary spontaneous pneumothorax. *Journal of Bronchology*. 2002;9(4):319-323.
- 10. Ramouz A, Lashkari MH, Fakour S, Rasihashemi SZ. Randomized controlled trial on the comparison of chest tube drainage and needle aspiration in the treatment of primary spontaneous pneumothorax. *Pak J Med Sci.* 2018;34(6):1369-1374.
- 11. Thelle A, Gjerdevik M, SueChu M, Hagen OM, Bakke P. Randomised comparison of needle aspiration and chest tube drainage in spontaneous pneumothorax. *The european respiratory journal*. 2017;49(4).
- 12. Chan JW, Ko FW, Ng CK, et al. Management of patients admitted with pneumothorax: a multi-centre study of the practice and outcomes in Hong Kong. *Hong Kong Medical Journal*. 2009;15(6):427-433.
- 13. Ong ME, Chan YH, Kee TY, Chew HC, Koh MS. Spontaneous pneumothorax outcome study (SPOT phase I): a 2-year review. *European Journal of Emergency Medicine*. 2004;11(2):89-94.
- 14. Choi SH, Lee SW, Hong YS, Kim SJ, Moon JD, Moon SW. Can spontaneous pneumothorax patients be treated by ambulatory care management? *Eur J Cardiothorac Surg.* 2007;31(3):491-495.
- 15. Ho KK, Ong ME, Koh MS, Wong E, Raghuram J. A randomized controlled trial comparing minichest tube and needle aspiration in outpatient management of primary spontaneous pneumothorax. *American Journal of Emergency Medicine*. 2011;29(9):1152-1157.
- 16. Hallifax RJ, McKeown E, Sivakumar P, et al. Ambulatory management of primary spontaneous pneumothorax: an open-label, randomised controlled trial. *The Lancet*. 2020;396(10243):39-49.
- 17. Roggla M, Wagner A, Brunner C, Roggla G. The management of pneumothorax with the thoracic vent versus conventional intercostal tube drainage. *Wiener Klinische Wochenschrift*. 1996;108(11):330-333.
- 18. Almind M, Lange P, Viskum K. Spontaneous pneumothorax: comparison of simple drainage, talc pleurodesis, and tetracycline pleurodesis. *Thorax*. 1989;44(8):627-630.
- 19. Chen JS, Chan WK, Tsai KT, et al. Simple aspiration and drainage and intrapleural minocycline pleurodesis versus simple aspiration and drainage for the initial treatment of primary spontaneous pneumothorax: an open-label, parallel-group, prospective, randomised, controlled trial. *Lancet*. 2013;381(9874):1277-1282.
- 20. Tschopp JM, Boutin C, Astoul P, et al. Talcage by medical thoracoscopy for primary spontaneous pneumothorax is more cost-effective than drainage: A randomised study. *European Respiratory Journal*. 2002;20(4):1003-1009.
- 21. Alfageme I, Moreno L, Huertas C, Vargas A, Hernandez J, Beiztegui A. Spontaneous pneumothorax. Long-term results with tetracycline pleurodesis. *Chest.* 1994;106(2):347-350.

- 22. Guo Y, Xie C, Rodriguez RM, Light RW. Factors related to recurrence of spontaneous pneumothorax. *Respirology*. 2005;10(3):378-384.
- 23. Olsen PS, Andersen HO. Long-term results after tetracycline pleurodesis in spontaneous pneumothorax. *Annals of Thoracic Surgery.* 1992;53(6):1015-1017.
- 24. Al-Mourgi M, Alshehri F. Video-assisted thoracoscopic surgery for the treatment of first-time spontaneous pneumothorax versus conservative treatment. *International Journal of Health Sciences*. 2015;9(4):428-432.
- 25. Olesen WH, Katballe N, Sindby JE, et al. Surgical treatment versus conventional chest tube drainage in primary spontaneous pneumothorax: a randomized controlled trial. *European Journal of Cardio-Thoracic Surgery*. 2018;54(1):113-121.
- 26. Cardillo G, Carleo F, Carbone L, et al. Long-term lung function following videothoracoscopic talc poudrage for primary spontaneous recurrent pneumothorax. *European Journal of Cardio-Thoracic Surgery*. 2007;31(5):802-805.
- 27. Granke K, Fischer CR, Gago O. The efficacy and timing of operative intervention for spontaneous pneumothorax. *Annals of Thoracic Surgery*. 1986;42(5):540-542.
- 28. Hagen RH, Reed W, Solheim K. Spontaneous pneumothorax. *Scandinavian Journal of Thoracic & Cardiovascular Surgery.* 1987;21(2):183-185.
- 29. Schramel FM, Sutedja TG, Braber JC, van Mourik JC, Postmus PE. Cost-effectiveness of video-assisted thoracoscopic surgery versus conservative treatment for first time or recurrent spontaneous pneumothorax. *European Respiratory Journal*. 1996;9(9):1821-1825.
- 30. Tanaka F, Itoh M, Esaki H, Isobe J, Ueno Y, Inoue R. Secondary spontaneous pneumothorax. *Annals of Thoracic Surgery*. 1993;55(2):372-376.

Question Protocol

Field	Content			
Review Question	Are conservative, aspiration, ambulatory, chemical pleurodesis or surgical interventions better than, or as good as, intercostal drainage at improving clinical outcomes in adult pneumothorax patients?			
Type of review question	Intervention review			
Objective of the review	A question comparing intercostal drainage alone with conservative, aspiration, ambulatory, chemical pleurodesis or surgical interventions. Which methods lead to best outcomes?			
Eligibility criteria – population / disease / condition / issue / domain	Adults (18+) with spontaneous pneumothorax			
Eligibility criteria – intervention(s)	Conservative Aspiration Ambulatory Chemical pleurodesis Thoracic surgery			
Eligibility criteria – comparators(s)	Pleural intervention (aspiration ± intercostal drain) (chest tube, chest drain, pleural drain, pleural aspiration, thoracentesis)			
Outcomes and prioritisation	Length of hospital stay Recurrence of pneumothorax Re-admission Need for further pleural procedures Complications Pain / breathlessness Quality of life Mortality			
Eligibility criteria – study design	RCTs Prospective comparative studies Case series of >100 patients			
Other inclusion /exclusion criteria	Non-English language excluded unless full English translation Conference abstracts, Cochrane reviews, systematic reviews, reviews Cochrane reviews and systematic reviews can be referenced in the text, but DO NOT use in a meta-analysis			

Proposed sensitivity / subgroup analysis, or meta-regression	Primary pneumothorax Secondary pneumothorax
Selection process – duplicate screening / selection / analysis	Agreement should be reached between Guideline members who are working on the question. If no agreement can be reached, a decision should be made by the Guideline co-chairs. If there is still no decision, the matter should be brought to the Guideline group and a decision will be made by consensus
Data management (software)	RevMan5 Pairwise meta-analyses Evidence review/considered judgement. Storing Guideline text, tables, figures, etc.
	Gradeprofiler Quality of evidence assessment
	Gradepro Recommendations
Information sources – databases and dates	MEDLINE, Embase, PubMED, Central Register of Controlled Trials and Cochrane Database of Systematic Reviews 1966 - present
Methods for assessing bias at outcome / study level	RevMan5 intervention review template and NICE risk of bias checklist (follow instructions in 'BTS Guideline Process Handbook – Intervention Review')
Methods for quantitative analysis – combining studies and exploring (in)consistency	If 3 or more relevant studies:
	RevMan5 for meta-analysis, heterogeneity testing and forest plots
	(follow instructions in 'BTS Guideline Process Handbook – Intervention Review')
Meta-bias assessment – publication bias, selective reporting bias	GRADEprofiler Intervention review quality of evidence assessment for each outcome
	(follow instructions in 'BTS Guideline Process Handbook – Intervention Review')
Rationale / context – what is known	Chest tube drainage of symptomatic pneumothorax is often referred to as standard practice, but new evidence suggests that conservative management may be better. Patients often want to be treated in an ambulatory out-patient fashion and there is recent published literature on this that requires formal evaluation.